{"title":"Zero Blackout Avoidance Keeping Emergency Services at Priority using Machine Learning","authors":"Saurabh Ganpat Munde, Ajay S Ladkat, R. Patil","doi":"10.1109/ICECCT56650.2023.10179676","DOIUrl":null,"url":null,"abstract":"Wide area monitoring protection and control system (WAMPAC) screen and control the grid dynamics progressively. Accessibility of PMU information in WAMPAC opened the entryway for information driven displaying. This paper proposes a novel information driven model for power outage chance investigation. Investigation depends on the Kullback-Leibler difference (KLD) along with Machine Learning (ML). The key commitment of this paper is probabilistic investigation of transmission line information to catch the power stream defenselessness in the course disappointment and early forecast of likely power outage dependent on the relative entropy among typical and the bothered power stream information. For power outage expectation the reference KLD limit is ascertained from the past power outage occasions and utilized as an antecedent for power outage early cautioning sign Intentional Islanding.","PeriodicalId":180790,"journal":{"name":"2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCT56650.2023.10179676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

广域监测保护与控制系统(WAMPAC)逐步对电网进行动态监测和控制。WAMPAC中PMU信息的可访问性为信息驱动显示打开了大门。提出了一种基于信息驱动的电力事故概率调查模型。调查依赖于Kullback-Leibler差异(KLD)和机器学习(ML)。本文的主要工作是对输电线路信息进行概率调查,根据典型和受干扰的输电线路信息之间的相对熵,捕捉线路故障时的输电线路无防御能力,并对可能发生的停电进行早期预测。对于预期停电,参考KLD限制是从以往的停电事件中确定的,并用作停电预警标志故意离岛的先决条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Zero Blackout Avoidance Keeping Emergency Services at Priority using Machine Learning
Wide area monitoring protection and control system (WAMPAC) screen and control the grid dynamics progressively. Accessibility of PMU information in WAMPAC opened the entryway for information driven displaying. This paper proposes a novel information driven model for power outage chance investigation. Investigation depends on the Kullback-Leibler difference (KLD) along with Machine Learning (ML). The key commitment of this paper is probabilistic investigation of transmission line information to catch the power stream defenselessness in the course disappointment and early forecast of likely power outage dependent on the relative entropy among typical and the bothered power stream information. For power outage expectation the reference KLD limit is ascertained from the past power outage occasions and utilized as an antecedent for power outage early cautioning sign Intentional Islanding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model of Markovian Queue with Catastrophe, Restoration and Balking Nibble Based Two Bit Invert Coding Technique for Serial Network on Chip Links Hesitant Triangular Fuzzy Dombi Operators and Its Applications Fuel Cost Optimization of Coal-Fired Power Plants using Coal Blending Proportions An Efficient Classification for Light Motor Vehicles using CatBoost Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1