{"title":"分子通信系统中的神经网络检测器","authors":"N. Farsad, A. Goldsmith","doi":"10.1109/SPAWC.2018.8445926","DOIUrl":null,"url":null,"abstract":"We consider molecular communication systems and show it is possible to train detectors without any knowledge of the underlying channel models. In particular, we demonstrate that a technique we previously developed, which is called sliding bidirectional recurrent neural network (SBRNN), performs well for a wide range of channel states when it is trained using a dataset that contains many sample transmissions under various channel conditions. We also demonstrate that the bit error rate (BER) performance of the proposed SBRNN detector is better than that of a Viterbi detector (VD) with imperfect channel state information (CSI) and it is computationally efficient.","PeriodicalId":240036,"journal":{"name":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Neural Network Detectors for Molecular Communication Systems\",\"authors\":\"N. Farsad, A. Goldsmith\",\"doi\":\"10.1109/SPAWC.2018.8445926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider molecular communication systems and show it is possible to train detectors without any knowledge of the underlying channel models. In particular, we demonstrate that a technique we previously developed, which is called sliding bidirectional recurrent neural network (SBRNN), performs well for a wide range of channel states when it is trained using a dataset that contains many sample transmissions under various channel conditions. We also demonstrate that the bit error rate (BER) performance of the proposed SBRNN detector is better than that of a Viterbi detector (VD) with imperfect channel state information (CSI) and it is computationally efficient.\",\"PeriodicalId\":240036,\"journal\":{\"name\":\"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2018.8445926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2018.8445926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neural Network Detectors for Molecular Communication Systems
We consider molecular communication systems and show it is possible to train detectors without any knowledge of the underlying channel models. In particular, we demonstrate that a technique we previously developed, which is called sliding bidirectional recurrent neural network (SBRNN), performs well for a wide range of channel states when it is trained using a dataset that contains many sample transmissions under various channel conditions. We also demonstrate that the bit error rate (BER) performance of the proposed SBRNN detector is better than that of a Viterbi detector (VD) with imperfect channel state information (CSI) and it is computationally efficient.