Yaqi Liu, Shuzhen Fang, Lingyu Wang, Chong Huan, Ruixue Wang
{"title":"基于联邦迁移学习的隐私保护神经图协同过滤","authors":"Yaqi Liu, Shuzhen Fang, Lingyu Wang, Chong Huan, Ruixue Wang","doi":"10.1108/el-06-2022-0141","DOIUrl":null,"url":null,"abstract":"\nPurpose\nIn recent years, personalized recommendations have facilitated easy access to users' personal information and historical interactions, thereby improving recommendation effectiveness. However, due to privacy risk concerns, it is essential to balance the accuracy of personalized recommendations with privacy protection. Accordingly, this paper aims to propose a neural graph collaborative filtering personalized recommendation framework based on federated transfer learning (FTL-NGCF), which achieves high-quality personalized recommendations with privacy protection.\n\n\nDesign/methodology/approach\nFTL-NGCF uses a third-party server to coordinate local users to train the graph neural networks (GNN) model. Each user client integrates user–item interactions into the embedding and uploads the model parameters to a server. To prevent attacks during communication and thus promote privacy preservation, the authors introduce homomorphic encryption to ensure secure model aggregation between clients and the server.\n\n\nFindings\nExperiments on three real data sets (Gowalla, Yelp2018, Amazon-Book) show that FTL-NGCF improves the recommendation performance in terms of recall and NDCG, based on the increased consideration of privacy protection relative to original federated learning methods.\n\n\nOriginality/value\nTo the best of the authors’ knowledge, no previous research has considered federated transfer learning framework for GNN-based recommendation. It can be extended to other recommended applications while maintaining privacy protection.\n","PeriodicalId":330882,"journal":{"name":"Electron. Libr.","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Neural graph collaborative filtering for privacy preservation based on federated transfer learning\",\"authors\":\"Yaqi Liu, Shuzhen Fang, Lingyu Wang, Chong Huan, Ruixue Wang\",\"doi\":\"10.1108/el-06-2022-0141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nIn recent years, personalized recommendations have facilitated easy access to users' personal information and historical interactions, thereby improving recommendation effectiveness. However, due to privacy risk concerns, it is essential to balance the accuracy of personalized recommendations with privacy protection. Accordingly, this paper aims to propose a neural graph collaborative filtering personalized recommendation framework based on federated transfer learning (FTL-NGCF), which achieves high-quality personalized recommendations with privacy protection.\\n\\n\\nDesign/methodology/approach\\nFTL-NGCF uses a third-party server to coordinate local users to train the graph neural networks (GNN) model. Each user client integrates user–item interactions into the embedding and uploads the model parameters to a server. To prevent attacks during communication and thus promote privacy preservation, the authors introduce homomorphic encryption to ensure secure model aggregation between clients and the server.\\n\\n\\nFindings\\nExperiments on three real data sets (Gowalla, Yelp2018, Amazon-Book) show that FTL-NGCF improves the recommendation performance in terms of recall and NDCG, based on the increased consideration of privacy protection relative to original federated learning methods.\\n\\n\\nOriginality/value\\nTo the best of the authors’ knowledge, no previous research has considered federated transfer learning framework for GNN-based recommendation. It can be extended to other recommended applications while maintaining privacy protection.\\n\",\"PeriodicalId\":330882,\"journal\":{\"name\":\"Electron. Libr.\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron. Libr.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/el-06-2022-0141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Libr.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/el-06-2022-0141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neural graph collaborative filtering for privacy preservation based on federated transfer learning
Purpose
In recent years, personalized recommendations have facilitated easy access to users' personal information and historical interactions, thereby improving recommendation effectiveness. However, due to privacy risk concerns, it is essential to balance the accuracy of personalized recommendations with privacy protection. Accordingly, this paper aims to propose a neural graph collaborative filtering personalized recommendation framework based on federated transfer learning (FTL-NGCF), which achieves high-quality personalized recommendations with privacy protection.
Design/methodology/approach
FTL-NGCF uses a third-party server to coordinate local users to train the graph neural networks (GNN) model. Each user client integrates user–item interactions into the embedding and uploads the model parameters to a server. To prevent attacks during communication and thus promote privacy preservation, the authors introduce homomorphic encryption to ensure secure model aggregation between clients and the server.
Findings
Experiments on three real data sets (Gowalla, Yelp2018, Amazon-Book) show that FTL-NGCF improves the recommendation performance in terms of recall and NDCG, based on the increased consideration of privacy protection relative to original federated learning methods.
Originality/value
To the best of the authors’ knowledge, no previous research has considered federated transfer learning framework for GNN-based recommendation. It can be extended to other recommended applications while maintaining privacy protection.