多核系统中并行快速通道数据竞赛检测器

Y. Song, Yann-Hang Lee
{"title":"多核系统中并行快速通道数据竞赛检测器","authors":"Y. Song, Yann-Hang Lee","doi":"10.1109/IPDPS.2017.87","DOIUrl":null,"url":null,"abstract":"Detecting data races in multithreaded programs is critical to ensure the correctness of the programs. To discover data races precisely without false alarms, dynamic detection approaches are often applied. However, the overhead of the existing dynamic detection approaches, even with recent innovations, is still substantially high. In this paper, we present a simple but efficient approach to parallelize data race detection in multicore SMP (Symmetric Multiprocessing) machines. In our approach, data access information needed for dynamic detection is collected at application threads and passed to de-tection threads. The access information is distributed in a way that the operation performed by each detection thread is inde-pendent of that of other detection threads. As a consequence, the overhead caused by locking operations in data race detection can be alleviated and multiple cores can be fully utilized to speed up and scale up the detection. Furthermore, each detection thread deals with only its own assigned memory access region rather than the whole address space. The executions of detection threads can exploit the spatial locality of accesses leading to an improved cache performance. We have applied our parallel approach on the FastTrack algorithm and demon-strated the validity of our approach on an Intel Xeon machine. Our experimental results show that the parallel FastTrack detector, on average, runs 2.2 times faster than the original FastTrack detector on the 8 core machine.","PeriodicalId":209524,"journal":{"name":"2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Parallel FastTrack Data Race Detector on Multi-core Systems\",\"authors\":\"Y. Song, Yann-Hang Lee\",\"doi\":\"10.1109/IPDPS.2017.87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting data races in multithreaded programs is critical to ensure the correctness of the programs. To discover data races precisely without false alarms, dynamic detection approaches are often applied. However, the overhead of the existing dynamic detection approaches, even with recent innovations, is still substantially high. In this paper, we present a simple but efficient approach to parallelize data race detection in multicore SMP (Symmetric Multiprocessing) machines. In our approach, data access information needed for dynamic detection is collected at application threads and passed to de-tection threads. The access information is distributed in a way that the operation performed by each detection thread is inde-pendent of that of other detection threads. As a consequence, the overhead caused by locking operations in data race detection can be alleviated and multiple cores can be fully utilized to speed up and scale up the detection. Furthermore, each detection thread deals with only its own assigned memory access region rather than the whole address space. The executions of detection threads can exploit the spatial locality of accesses leading to an improved cache performance. We have applied our parallel approach on the FastTrack algorithm and demon-strated the validity of our approach on an Intel Xeon machine. Our experimental results show that the parallel FastTrack detector, on average, runs 2.2 times faster than the original FastTrack detector on the 8 core machine.\",\"PeriodicalId\":209524,\"journal\":{\"name\":\"2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2017.87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2017.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

检测多线程程序中的数据竞争对于确保程序的正确性至关重要。为了准确地发现数据竞争而不产生假警报,通常采用动态检测方法。然而,即使有了最近的创新,现有的动态检测方法的开销仍然相当高。在本文中,我们提出了一个简单而有效的方法来并行化多核SMP(对称多处理)机器中的数据竞争检测。在我们的方法中,动态检测所需的数据访问信息在应用程序线程处收集,并传递给检测线程。访问信息以每个检测线程执行的操作独立于其他检测线程的操作的方式进行分发。因此,可以减轻数据竞争检测中锁定操作造成的开销,并且可以充分利用多核来加速和扩展检测。此外,每个检测线程只处理自己分配的内存访问区域,而不是整个地址空间。检测线程的执行可以利用访问的空间局部性,从而提高缓存性能。我们已经在FastTrack算法上应用了我们的并行方法,并在英特尔至强处理器上证明了我们方法的有效性。我们的实验结果表明,在8核机器上,并行FastTrack检测器的平均运行速度是原始FastTrack检测器的2.2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Parallel FastTrack Data Race Detector on Multi-core Systems
Detecting data races in multithreaded programs is critical to ensure the correctness of the programs. To discover data races precisely without false alarms, dynamic detection approaches are often applied. However, the overhead of the existing dynamic detection approaches, even with recent innovations, is still substantially high. In this paper, we present a simple but efficient approach to parallelize data race detection in multicore SMP (Symmetric Multiprocessing) machines. In our approach, data access information needed for dynamic detection is collected at application threads and passed to de-tection threads. The access information is distributed in a way that the operation performed by each detection thread is inde-pendent of that of other detection threads. As a consequence, the overhead caused by locking operations in data race detection can be alleviated and multiple cores can be fully utilized to speed up and scale up the detection. Furthermore, each detection thread deals with only its own assigned memory access region rather than the whole address space. The executions of detection threads can exploit the spatial locality of accesses leading to an improved cache performance. We have applied our parallel approach on the FastTrack algorithm and demon-strated the validity of our approach on an Intel Xeon machine. Our experimental results show that the parallel FastTrack detector, on average, runs 2.2 times faster than the original FastTrack detector on the 8 core machine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Capability Models for Manycore Memory Systems: A Case-Study with Xeon Phi KNL Toucan — A Translator for Communication Tolerant MPI Applications Production Hardware Overprovisioning: Real-World Performance Optimization Using an Extensible Power-Aware Resource Management Framework Approximation Proofs of a Fast and Efficient List Scheduling Algorithm for Task-Based Runtime Systems on Multicores and GPUs Dynamic Memory-Aware Task-Tree Scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1