云中对截止日期敏感作业的推测执行优化

Maotong Xu, Sultan Alamro, Tian Lan, S. Subramaniam
{"title":"云中对截止日期敏感作业的推测执行优化","authors":"Maotong Xu, Sultan Alamro, Tian Lan, S. Subramaniam","doi":"10.1145/3078505.3078541","DOIUrl":null,"url":null,"abstract":"In this paper, we bring various speculative scheduling strategies together under a unifying optimization framework, which defines a new metric, Probability of Completion before Deadlines (PoCD), to measure the probability that MapReduce jobs meet their desired deadlines. We propose an optimization problem to jointly optimize PoCD and execution cost in different strategies. Three strategies are prototyped on Hadoop MapReduce and evaluated against two baseline strategies using experiments. A 78% net utility increase with up to 94% PoCD and 12% cost improvement is achieved.","PeriodicalId":133673,"journal":{"name":"Proceedings of the 2017 ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Optimizing Speculative Execution of Deadline-Sensitive Jobs in Cloud\",\"authors\":\"Maotong Xu, Sultan Alamro, Tian Lan, S. Subramaniam\",\"doi\":\"10.1145/3078505.3078541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we bring various speculative scheduling strategies together under a unifying optimization framework, which defines a new metric, Probability of Completion before Deadlines (PoCD), to measure the probability that MapReduce jobs meet their desired deadlines. We propose an optimization problem to jointly optimize PoCD and execution cost in different strategies. Three strategies are prototyped on Hadoop MapReduce and evaluated against two baseline strategies using experiments. A 78% net utility increase with up to 94% PoCD and 12% cost improvement is achieved.\",\"PeriodicalId\":133673,\"journal\":{\"name\":\"Proceedings of the 2017 ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3078505.3078541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078505.3078541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们将各种推测调度策略放在一个统一的优化框架下,该框架定义了一个新的度量,即截止日期前完成概率(PoCD),以衡量MapReduce作业满足预期截止日期的概率。提出了一个优化问题,对不同策略下的PoCD和执行成本进行联合优化。在Hadoop MapReduce上对三种策略进行了原型化,并通过实验对两种基线策略进行了评估。净效用增加78%,PoCD提高94%,成本降低12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing Speculative Execution of Deadline-Sensitive Jobs in Cloud
In this paper, we bring various speculative scheduling strategies together under a unifying optimization framework, which defines a new metric, Probability of Completion before Deadlines (PoCD), to measure the probability that MapReduce jobs meet their desired deadlines. We propose an optimization problem to jointly optimize PoCD and execution cost in different strategies. Three strategies are prototyped on Hadoop MapReduce and evaluated against two baseline strategies using experiments. A 78% net utility increase with up to 94% PoCD and 12% cost improvement is achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session details: Session 5: Towards Efficient and Durable Storage Routing Money, Not Packets: A Tutorial on Internet Economics Accelerating Performance Inference over Closed Systems by Asymptotic Methods Session details: Session 3: Assessing Vulnerability of Large Networks Exploiting Data Longevity for Enhancing the Lifetime of Flash-based Storage Class Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1