{"title":"基于剪枝双模神经网络的HSLA钢板强度-延性平衡建模","authors":"P. Das, F. Pettersson, Shubhabrata Dutta","doi":"10.1504/IJAISC.2014.065802","DOIUrl":null,"url":null,"abstract":"In this paper, an attempt has been made in this study to grow the concept of modularity along with pruned networks for strength-ductility balance of high strength low alloy (HSLA) steel plates using lower and upperlayer pruning algorithms. Modelling of strength-ductility balance in case of high strength low alloy steel is a major concern in industrial research. In most cases, the cause of inferior mechanical properties of such steel products could not be clearly identified. The comparative analysis with standard fully-connected network and pruned network reveals an improved performance for pruned-modular architecture and explains the metallurgical phenomenon of HSLA steel in a better way.","PeriodicalId":364571,"journal":{"name":"Int. J. Artif. Intell. Soft Comput.","volume":"445 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Pruned-bimodular neural networks for modelling of strength-ductility balance of HSLA steel plates\",\"authors\":\"P. Das, F. Pettersson, Shubhabrata Dutta\",\"doi\":\"10.1504/IJAISC.2014.065802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an attempt has been made in this study to grow the concept of modularity along with pruned networks for strength-ductility balance of high strength low alloy (HSLA) steel plates using lower and upperlayer pruning algorithms. Modelling of strength-ductility balance in case of high strength low alloy steel is a major concern in industrial research. In most cases, the cause of inferior mechanical properties of such steel products could not be clearly identified. The comparative analysis with standard fully-connected network and pruned network reveals an improved performance for pruned-modular architecture and explains the metallurgical phenomenon of HSLA steel in a better way.\",\"PeriodicalId\":364571,\"journal\":{\"name\":\"Int. J. Artif. Intell. Soft Comput.\",\"volume\":\"445 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Artif. Intell. Soft Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJAISC.2014.065802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Soft Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAISC.2014.065802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pruned-bimodular neural networks for modelling of strength-ductility balance of HSLA steel plates
In this paper, an attempt has been made in this study to grow the concept of modularity along with pruned networks for strength-ductility balance of high strength low alloy (HSLA) steel plates using lower and upperlayer pruning algorithms. Modelling of strength-ductility balance in case of high strength low alloy steel is a major concern in industrial research. In most cases, the cause of inferior mechanical properties of such steel products could not be clearly identified. The comparative analysis with standard fully-connected network and pruned network reveals an improved performance for pruned-modular architecture and explains the metallurgical phenomenon of HSLA steel in a better way.