{"title":"移动机器人的动态、随时任务和路径规划","authors":"Cuebong Wong, Erfu Yang, Xiu T. Yan, Dongbing Gu","doi":"10.31256/UKRAS19.10","DOIUrl":null,"url":null,"abstract":"The study of combined task and motion planning has mostly been concerned with feasibility planning for high-dimensional, complex manipulation problems. Instead this paper gives its attention to optimal planning for low-dimensional planning problems and introduces the dynamic, anytime task and path planner for mobile robots. The proposed approach adopts a multi-tree extension of the T-RRT* algorithm in the path planning layer and further introduces dynamic and anytime planning components to enable low-level path correction and high-level re-planning capabilities when operating in dynamic or partially-known environments. Evaluation of the planner against existing methods show cost reductions of solution plans while remaining computationally efficient, and simulated deployment of the planner validates the effectiveness of the dynamic, anytime behavior of the proposed approach.","PeriodicalId":424229,"journal":{"name":"UK-RAS19 Conference: \"Embedded Intelligence: Enabling and Supporting RAS Technologies\" Proceedings","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic, Anytime Task and Path Planning for Mobile Robots\",\"authors\":\"Cuebong Wong, Erfu Yang, Xiu T. Yan, Dongbing Gu\",\"doi\":\"10.31256/UKRAS19.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of combined task and motion planning has mostly been concerned with feasibility planning for high-dimensional, complex manipulation problems. Instead this paper gives its attention to optimal planning for low-dimensional planning problems and introduces the dynamic, anytime task and path planner for mobile robots. The proposed approach adopts a multi-tree extension of the T-RRT* algorithm in the path planning layer and further introduces dynamic and anytime planning components to enable low-level path correction and high-level re-planning capabilities when operating in dynamic or partially-known environments. Evaluation of the planner against existing methods show cost reductions of solution plans while remaining computationally efficient, and simulated deployment of the planner validates the effectiveness of the dynamic, anytime behavior of the proposed approach.\",\"PeriodicalId\":424229,\"journal\":{\"name\":\"UK-RAS19 Conference: \\\"Embedded Intelligence: Enabling and Supporting RAS Technologies\\\" Proceedings\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UK-RAS19 Conference: \\\"Embedded Intelligence: Enabling and Supporting RAS Technologies\\\" Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31256/UKRAS19.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UK-RAS19 Conference: \"Embedded Intelligence: Enabling and Supporting RAS Technologies\" Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31256/UKRAS19.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic, Anytime Task and Path Planning for Mobile Robots
The study of combined task and motion planning has mostly been concerned with feasibility planning for high-dimensional, complex manipulation problems. Instead this paper gives its attention to optimal planning for low-dimensional planning problems and introduces the dynamic, anytime task and path planner for mobile robots. The proposed approach adopts a multi-tree extension of the T-RRT* algorithm in the path planning layer and further introduces dynamic and anytime planning components to enable low-level path correction and high-level re-planning capabilities when operating in dynamic or partially-known environments. Evaluation of the planner against existing methods show cost reductions of solution plans while remaining computationally efficient, and simulated deployment of the planner validates the effectiveness of the dynamic, anytime behavior of the proposed approach.