基于元胞自动机的多线索多尺度显著性检测

Ling Huang, Songguang Tang, Jiani Hu, Weihong Deng
{"title":"基于元胞自动机的多线索多尺度显著性检测","authors":"Ling Huang, Songguang Tang, Jiani Hu, Weihong Deng","doi":"10.1109/ICNIDC.2016.7974563","DOIUrl":null,"url":null,"abstract":"Saliency detection plays an important role in computer vision. This paper proposes a saliency detection algorithm which is based on multi-cue and multi-scale with cellular automata. The algorithm constructs a background-based map at first and optimizes it with an automatic updating mechanism — single-layer cellular automata. Furthermore, two important visual cues, focusness and objectness, are added to evaluate saliency in different perspectives. In addition, multi-scale is introduced to avoid the saliency results' sensitive to different scales and the output saliency map is generated by multi-layer fusion. Extensive experiments on three public datasets comparing with other state-of-the-art results demonstrate the superior of the algorithm.","PeriodicalId":439987,"journal":{"name":"2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Saliency detection based on multi-cue and multi-scale with cellular automata\",\"authors\":\"Ling Huang, Songguang Tang, Jiani Hu, Weihong Deng\",\"doi\":\"10.1109/ICNIDC.2016.7974563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Saliency detection plays an important role in computer vision. This paper proposes a saliency detection algorithm which is based on multi-cue and multi-scale with cellular automata. The algorithm constructs a background-based map at first and optimizes it with an automatic updating mechanism — single-layer cellular automata. Furthermore, two important visual cues, focusness and objectness, are added to evaluate saliency in different perspectives. In addition, multi-scale is introduced to avoid the saliency results' sensitive to different scales and the output saliency map is generated by multi-layer fusion. Extensive experiments on three public datasets comparing with other state-of-the-art results demonstrate the superior of the algorithm.\",\"PeriodicalId\":439987,\"journal\":{\"name\":\"2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNIDC.2016.7974563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNIDC.2016.7974563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

显著性检测在计算机视觉中起着重要的作用。提出了一种基于元胞自动机的多线索多尺度显著性检测算法。该算法首先构建基于背景的地图,然后利用单层元胞自动机自动更新机制对其进行优化。此外,两个重要的视觉线索,焦点和客观,被添加到评估显著性在不同的角度。此外,为了避免显著性结果对不同尺度的敏感,引入了多尺度,并通过多层融合生成输出的显著性图。在三个公开的数据集上进行了大量的实验,并与其他最新的结果进行了比较,证明了该算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Saliency detection based on multi-cue and multi-scale with cellular automata
Saliency detection plays an important role in computer vision. This paper proposes a saliency detection algorithm which is based on multi-cue and multi-scale with cellular automata. The algorithm constructs a background-based map at first and optimizes it with an automatic updating mechanism — single-layer cellular automata. Furthermore, two important visual cues, focusness and objectness, are added to evaluate saliency in different perspectives. In addition, multi-scale is introduced to avoid the saliency results' sensitive to different scales and the output saliency map is generated by multi-layer fusion. Extensive experiments on three public datasets comparing with other state-of-the-art results demonstrate the superior of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection-assisted interference parameter estimation and interference cancellation for LTE-Advanced system A network risk assessment methodology for power communication business An experimental study: The sufficient respiration rate detection technique via continuous wave Doppler radar Automatic calculation model of large scale soil loss model based on csle model Improved belief propagation with istinctiveness measure for stereo matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1