图像识别软件的测试数据增强

Pu Wang, Zhiyi Zhang, Yuqian Zhou, Zhiqiu Huang
{"title":"图像识别软件的测试数据增强","authors":"Pu Wang, Zhiyi Zhang, Yuqian Zhou, Zhiqiu Huang","doi":"10.1109/QRS-C51114.2020.00054","DOIUrl":null,"url":null,"abstract":"Image recognition software has been widely used in many vital areas, so it needs to be thoroughly tested with images as test data. However, for some special areas, such as medical treatment, there are only a few sufficient and credible test data. Some test data still depends on the training data, which results in the defect detection ability of the testing is not high. In this paper, we propose a new test data augmentation approach with combing domain knowledge and data mutation. Given an image, our approach extracts the features of the recognition targets in this image based on domain knowledge, then mutates these features to generate new images. In theory, our approach could generate high-quality test data, which helps testing image recognition software adequately, and improving the accuracy of image recognition software.","PeriodicalId":358174,"journal":{"name":"2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Test Data Augmentation for Image Recognition Software\",\"authors\":\"Pu Wang, Zhiyi Zhang, Yuqian Zhou, Zhiqiu Huang\",\"doi\":\"10.1109/QRS-C51114.2020.00054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image recognition software has been widely used in many vital areas, so it needs to be thoroughly tested with images as test data. However, for some special areas, such as medical treatment, there are only a few sufficient and credible test data. Some test data still depends on the training data, which results in the defect detection ability of the testing is not high. In this paper, we propose a new test data augmentation approach with combing domain knowledge and data mutation. Given an image, our approach extracts the features of the recognition targets in this image based on domain knowledge, then mutates these features to generate new images. In theory, our approach could generate high-quality test data, which helps testing image recognition software adequately, and improving the accuracy of image recognition software.\",\"PeriodicalId\":358174,\"journal\":{\"name\":\"2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QRS-C51114.2020.00054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS-C51114.2020.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像识别软件已广泛应用于许多重要领域,因此需要以图像作为测试数据进行彻底的测试。然而,对于一些特殊领域,如医疗,只有少数充分和可信的测试数据。部分测试数据仍然依赖于训练数据,导致测试的缺陷检测能力不高。本文提出了一种结合领域知识和数据突变的测试数据增强方法。给定图像,我们的方法基于领域知识提取图像中识别目标的特征,然后对这些特征进行突变以生成新图像。理论上,我们的方法可以生成高质量的测试数据,有助于充分测试图像识别软件,提高图像识别软件的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Test Data Augmentation for Image Recognition Software
Image recognition software has been widely used in many vital areas, so it needs to be thoroughly tested with images as test data. However, for some special areas, such as medical treatment, there are only a few sufficient and credible test data. Some test data still depends on the training data, which results in the defect detection ability of the testing is not high. In this paper, we propose a new test data augmentation approach with combing domain knowledge and data mutation. Given an image, our approach extracts the features of the recognition targets in this image based on domain knowledge, then mutates these features to generate new images. In theory, our approach could generate high-quality test data, which helps testing image recognition software adequately, and improving the accuracy of image recognition software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decomposition of Attributes Oriented Software Trustworthiness Measure Based on Axiomatic Approaches A Model-based RCM Analysis Method A Threat Analysis Methodology for Security Requirements Elicitation in Machine Learning Based Systems Timely Publication of Transaction Records in a Private Blockchain Organizing Committee QRS 2020
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1