基于特征的心电数据相似度搜索

Meng Wu, Lei Li, Hongyan Li
{"title":"基于特征的心电数据相似度搜索","authors":"Meng Wu, Lei Li, Hongyan Li","doi":"10.1109/ICBK.2019.00044","DOIUrl":null,"url":null,"abstract":"Electrocardiogram (ECG) data is commonly used in clinic to reveal instant status of cardiac electrophysiology, and is related to numerous heart diseases. Efficient similarity search on ECG data can assist diagnosis. However, similarity search on ECG data is different from similarity search on images in that ECG data is a kind of physiological wave data, and that there are no established robust feature extraction methods for these physiological wave data. Thus, we adopt a supervised framework to preserve locality based on label information, while extracting effective features automatically. Experiments on real-life data show the effectiveness and efficiency of the proposed approach FASE.","PeriodicalId":383917,"journal":{"name":"2019 IEEE International Conference on Big Knowledge (ICBK)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"FASE: Feature-Based Similarity Search on ECG Data\",\"authors\":\"Meng Wu, Lei Li, Hongyan Li\",\"doi\":\"10.1109/ICBK.2019.00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrocardiogram (ECG) data is commonly used in clinic to reveal instant status of cardiac electrophysiology, and is related to numerous heart diseases. Efficient similarity search on ECG data can assist diagnosis. However, similarity search on ECG data is different from similarity search on images in that ECG data is a kind of physiological wave data, and that there are no established robust feature extraction methods for these physiological wave data. Thus, we adopt a supervised framework to preserve locality based on label information, while extracting effective features automatically. Experiments on real-life data show the effectiveness and efficiency of the proposed approach FASE.\",\"PeriodicalId\":383917,\"journal\":{\"name\":\"2019 IEEE International Conference on Big Knowledge (ICBK)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Big Knowledge (ICBK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBK.2019.00044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2019.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

心电图(Electrocardiogram, ECG)数据是临床常用的反映心脏电生理即时状态的数据,与许多心脏疾病有关。对心电数据进行高效的相似度搜索有助于诊断。然而,心电数据的相似度搜索不同于图像的相似度搜索,因为心电数据是一种生理波数据,对于这些生理波数据,目前还没有成熟的鲁棒性特征提取方法。因此,我们采用基于标签信息的监督框架来保持局部性,同时自动提取有效特征。实际数据实验证明了该方法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FASE: Feature-Based Similarity Search on ECG Data
Electrocardiogram (ECG) data is commonly used in clinic to reveal instant status of cardiac electrophysiology, and is related to numerous heart diseases. Efficient similarity search on ECG data can assist diagnosis. However, similarity search on ECG data is different from similarity search on images in that ECG data is a kind of physiological wave data, and that there are no established robust feature extraction methods for these physiological wave data. Thus, we adopt a supervised framework to preserve locality based on label information, while extracting effective features automatically. Experiments on real-life data show the effectiveness and efficiency of the proposed approach FASE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Two-Stage Clustering Algorithm Based on Improved K-Means and Density Peak Clustering Matrix Profile XX: Finding and Visualizing Time Series Motifs of All Lengths using the Matrix Profile A Spatial Co-location Pattern Mining Algorithm Without Distance Thresholds Adaptive Structural Co-regularization for Unsupervised Multi-view Feature Selection Which Patient to Treat Next? Probabilistic Stream-Based Reasoning for Decision Support and Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1