不等式约束线性混合模型的贝叶斯方法:估计和模型选择

B. Kato, H. Hoijtink
{"title":"不等式约束线性混合模型的贝叶斯方法:估计和模型选择","authors":"B. Kato, H. Hoijtink","doi":"10.1191/1471082X06st119oa","DOIUrl":null,"url":null,"abstract":"Constrained parameter problems arise in a wide variety of applications. This article deals with estimation and model selection in linear mixed models with inequality constraints on the parameters. It is shown that different theories can be translated into statistical models by putting constraints on the model parameters yielding a set of competing models. A new approach based on the principle of encompassing priors is proposed and used to compute Bayes factors and subsequently posterior model probabilities. Model selection is based on posterior model probabilities. The approach is illustrated using a longitudinal data set.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A Bayesian approach to inequality constrained linear mixed models: estimation and model selection\",\"authors\":\"B. Kato, H. Hoijtink\",\"doi\":\"10.1191/1471082X06st119oa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constrained parameter problems arise in a wide variety of applications. This article deals with estimation and model selection in linear mixed models with inequality constraints on the parameters. It is shown that different theories can be translated into statistical models by putting constraints on the model parameters yielding a set of competing models. A new approach based on the principle of encompassing priors is proposed and used to compute Bayes factors and subsequently posterior model probabilities. Model selection is based on posterior model probabilities. The approach is illustrated using a longitudinal data set.\",\"PeriodicalId\":354759,\"journal\":{\"name\":\"Statistical Modeling\",\"volume\":\"205 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1191/1471082X06st119oa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X06st119oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

约束参数问题出现在各种各样的应用中。本文研究了参数具有不等式约束的线性混合模型的估计和模型选择问题。研究表明,不同的理论可以通过对模型参数施加约束而转化为统计模型,从而产生一组相互竞争的模型。提出了一种基于包含先验原理的新方法,并将其用于计算贝叶斯因子和后验模型概率。模型选择基于后验模型概率。该方法使用纵向数据集进行说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Bayesian approach to inequality constrained linear mixed models: estimation and model selection
Constrained parameter problems arise in a wide variety of applications. This article deals with estimation and model selection in linear mixed models with inequality constraints on the parameters. It is shown that different theories can be translated into statistical models by putting constraints on the model parameters yielding a set of competing models. A new approach based on the principle of encompassing priors is proposed and used to compute Bayes factors and subsequently posterior model probabilities. Model selection is based on posterior model probabilities. The approach is illustrated using a longitudinal data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure GLMM approach to study the spatial and temporal evolution of spikes in the small intestine Comparing nonparametric surfaces Analyzing the emergence times of permanent teeth: an example of modeling the covariance matrix with interval-censored data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1