通过回归树减少SARX建模和控制

Luis Felipe Florenzan Reyes, Francesco Smarra, A. D’innocenzo
{"title":"通过回归树减少SARX建模和控制","authors":"Luis Felipe Florenzan Reyes, Francesco Smarra, A. D’innocenzo","doi":"10.23919/ACC53348.2022.9867228","DOIUrl":null,"url":null,"abstract":"In this work a complexity reduction methodology is proposed for a data-driven Switched Auto-Regressive eXoge-nous (SARX) model identification algorithm based on Regression Trees. In particular, we aim at reducing the number of submodels of a SARX dynamical model without compromising (and indeed improving) the model accuracy, and mitigating the overfitting problem. A validation procedure is addressed to compare the performance of the reduced model with respect to the original one. Results show an important reduction in the number of modes of the identified model that ranges between 96% and 99.74%. The accuracy of the reduced model is also tested in terms of closed-loop control performance in a Model Predictive Control (MPC) setup, on a benchmark consisting of a non-linear inverted pendulum on a cart: the comparison is provided with respect to an oracle, i.e. an MPC setup with perfect knowledge of the plant dynamics.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduced SARX modeling and control via Regression Trees\",\"authors\":\"Luis Felipe Florenzan Reyes, Francesco Smarra, A. D’innocenzo\",\"doi\":\"10.23919/ACC53348.2022.9867228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work a complexity reduction methodology is proposed for a data-driven Switched Auto-Regressive eXoge-nous (SARX) model identification algorithm based on Regression Trees. In particular, we aim at reducing the number of submodels of a SARX dynamical model without compromising (and indeed improving) the model accuracy, and mitigating the overfitting problem. A validation procedure is addressed to compare the performance of the reduced model with respect to the original one. Results show an important reduction in the number of modes of the identified model that ranges between 96% and 99.74%. The accuracy of the reduced model is also tested in terms of closed-loop control performance in a Model Predictive Control (MPC) setup, on a benchmark consisting of a non-linear inverted pendulum on a cart: the comparison is provided with respect to an oracle, i.e. an MPC setup with perfect knowledge of the plant dynamics.\",\"PeriodicalId\":366299,\"journal\":{\"name\":\"2022 American Control Conference (ACC)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC53348.2022.9867228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于回归树的数据驱动的切换自回归外源(SARX)模型识别算法的复杂性降低方法。特别是,我们的目标是减少SARX动态模型的子模型数量,而不影响(实际上是提高)模型精度,并减轻过拟合问题。一个验证过程是用来比较简化后的模型与原始模型的性能。结果表明,所识别模型的模态数显著减少,减少幅度在96% ~ 99.74%之间。简化模型的准确性也在模型预测控制(MPC)设置中的闭环控制性能方面进行了测试,在一个由手推车上的非线性倒立摆组成的基准上进行了测试:提供了关于oracle的比较,即具有完美植物动力学知识的MPC设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reduced SARX modeling and control via Regression Trees
In this work a complexity reduction methodology is proposed for a data-driven Switched Auto-Regressive eXoge-nous (SARX) model identification algorithm based on Regression Trees. In particular, we aim at reducing the number of submodels of a SARX dynamical model without compromising (and indeed improving) the model accuracy, and mitigating the overfitting problem. A validation procedure is addressed to compare the performance of the reduced model with respect to the original one. Results show an important reduction in the number of modes of the identified model that ranges between 96% and 99.74%. The accuracy of the reduced model is also tested in terms of closed-loop control performance in a Model Predictive Control (MPC) setup, on a benchmark consisting of a non-linear inverted pendulum on a cart: the comparison is provided with respect to an oracle, i.e. an MPC setup with perfect knowledge of the plant dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Connectivity during Multi-agent Consensus Dynamics via Model Predictive Control Gradient-Based Optimization for Anti-Windup PID Controls Power Management for Noise Aware Path Planning of Hybrid UAVs Fixed-Time Seeking and Tracking of Time-Varying Nash Equilibria in Noncooperative Games Aerial Interception of Non-Cooperative Intruder using Model Predictive Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1