黎曼流形学习算法

Shaorong Chen, Hongqiang Wang, Xiang Li, Yongshun Ling
{"title":"黎曼流形学习算法","authors":"Shaorong Chen, Hongqiang Wang, Xiang Li, Yongshun Ling","doi":"10.1109/CSIP.2012.6309028","DOIUrl":null,"url":null,"abstract":"We present a novel method for manifold learning, which identifies the low-dimensional manifold-like structure presented in a set of data points in a possibly high-dimensional space with homomorphism contained. The main idea is derived from the concept of covariant components in curvilinear coordinate systems. In a linearly transparent way, we translate this idea to a cloud of data points in order to calculate the coordinates of the points directly. Our implementation currently uses Dijkstra's algorithm for shortest paths in graphs and some basic theorems from Riemannian differential geometry. We expect this approach to open up new possibilities for manifold learning using only geometry constraints, which means the coordinate system is “learned” from experimental high-dimensional data rather than defined analytically using e.g. models based on PCA, MDS, and Eigenmaps.","PeriodicalId":193335,"journal":{"name":"2012 International Conference on Computer Science and Information Processing (CSIP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithm for Riemannian manifold learning\",\"authors\":\"Shaorong Chen, Hongqiang Wang, Xiang Li, Yongshun Ling\",\"doi\":\"10.1109/CSIP.2012.6309028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel method for manifold learning, which identifies the low-dimensional manifold-like structure presented in a set of data points in a possibly high-dimensional space with homomorphism contained. The main idea is derived from the concept of covariant components in curvilinear coordinate systems. In a linearly transparent way, we translate this idea to a cloud of data points in order to calculate the coordinates of the points directly. Our implementation currently uses Dijkstra's algorithm for shortest paths in graphs and some basic theorems from Riemannian differential geometry. We expect this approach to open up new possibilities for manifold learning using only geometry constraints, which means the coordinate system is “learned” from experimental high-dimensional data rather than defined analytically using e.g. models based on PCA, MDS, and Eigenmaps.\",\"PeriodicalId\":193335,\"journal\":{\"name\":\"2012 International Conference on Computer Science and Information Processing (CSIP)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Computer Science and Information Processing (CSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSIP.2012.6309028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Computer Science and Information Processing (CSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSIP.2012.6309028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的流形学习方法,该方法可以识别包含同态的高维空间中的一组数据点中的低维流形结构。其主要思想来源于曲线坐标系中的协变分量的概念。通过线性透明的方式,我们将这个想法转化为数据点的云,以便直接计算点的坐标。我们的实现目前使用了图中最短路径的Dijkstra算法和黎曼微分几何中的一些基本定理。我们期望这种方法为仅使用几何约束的流形学习开辟新的可能性,这意味着坐标系统是从实验高维数据中“学习”的,而不是使用基于PCA、MDS和特征映射的模型来解析定义的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Algorithm for Riemannian manifold learning
We present a novel method for manifold learning, which identifies the low-dimensional manifold-like structure presented in a set of data points in a possibly high-dimensional space with homomorphism contained. The main idea is derived from the concept of covariant components in curvilinear coordinate systems. In a linearly transparent way, we translate this idea to a cloud of data points in order to calculate the coordinates of the points directly. Our implementation currently uses Dijkstra's algorithm for shortest paths in graphs and some basic theorems from Riemannian differential geometry. We expect this approach to open up new possibilities for manifold learning using only geometry constraints, which means the coordinate system is “learned” from experimental high-dimensional data rather than defined analytically using e.g. models based on PCA, MDS, and Eigenmaps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network information impacting on rural education Scene detection in interference rejection combining algorithm Effects of oversample in tone reservation scheme for PAPR reduction in OFDM systems Efficient clustering index for semantic Web service based on user preference Research on fusion control of cement rotary kiln based on rough set
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1