从神经元模型到神经元动力学和图像处理

M. Keil
{"title":"从神经元模型到神经元动力学和图像处理","authors":"M. Keil","doi":"10.1002/9783527680863.CH10","DOIUrl":null,"url":null,"abstract":"This paper is an introduction to the membrane potential equation for neurons. Its properties are described, as well as sample applications. Networks of these equations can be used for modeling neuronal systems, which also process images and video sequences, respectively. Specifically, (i) a dynamic retina is proposed (based on a reaction-diffusion system), which predicts afterimages and simple visual illusions, (ii) a system for texture segregation (texture elements are understood as even-symmetric contrast features), and (iii) a network for detecting object approaches (inspired by the locust visual system).","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"From Neuronal Models to Neuronal Dynamics and Image Processing\",\"authors\":\"M. Keil\",\"doi\":\"10.1002/9783527680863.CH10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is an introduction to the membrane potential equation for neurons. Its properties are described, as well as sample applications. Networks of these equations can be used for modeling neuronal systems, which also process images and video sequences, respectively. Specifically, (i) a dynamic retina is proposed (based on a reaction-diffusion system), which predicts afterimages and simple visual illusions, (ii) a system for texture segregation (texture elements are understood as even-symmetric contrast features), and (iii) a network for detecting object approaches (inspired by the locust visual system).\",\"PeriodicalId\":298664,\"journal\":{\"name\":\"arXiv: Neurons and Cognition\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Neurons and Cognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9783527680863.CH10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9783527680863.CH10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了神经元的膜电位方程。描述了它的属性,以及示例应用程序。这些方程的网络可以用于神经元系统的建模,它们也分别处理图像和视频序列。具体来说,(i)提出了一个动态视网膜(基于反应扩散系统),它可以预测后像和简单的视觉错觉,(ii)一个纹理分离系统(纹理元素被理解为均匀对称的对比度特征),以及(iii)一个检测物体接近的网络(受蝗虫视觉系统的启发)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From Neuronal Models to Neuronal Dynamics and Image Processing
This paper is an introduction to the membrane potential equation for neurons. Its properties are described, as well as sample applications. Networks of these equations can be used for modeling neuronal systems, which also process images and video sequences, respectively. Specifically, (i) a dynamic retina is proposed (based on a reaction-diffusion system), which predicts afterimages and simple visual illusions, (ii) a system for texture segregation (texture elements are understood as even-symmetric contrast features), and (iii) a network for detecting object approaches (inspired by the locust visual system).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phase-amplitude coupling in neuronal oscillator networks Quality of internal representation shapes learning performance in feedback neural networks Generalisation of neuronal excitability allows for the identification of an excitability change parameter that links to an experimentally measurable value Short term memory by transient oscillatory dynamics in recurrent neural networks Predicting brain evoked response to external stimuli from temporal correlations of spontaneous activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1