基于外置相机的移动机器人姿态与稀疏结构

D. Pizarro, E. Santiso, M. Mazo, M. Marrón
{"title":"基于外置相机的移动机器人姿态与稀疏结构","authors":"D. Pizarro, E. Santiso, M. Mazo, M. Marrón","doi":"10.1109/WISP.2007.4447642","DOIUrl":null,"url":null,"abstract":"In this paper a system capable of obtaining the 3D pose of a mobile robot using an external calibrated camera is proposed. The system robustly tracks point fiducials in the image plane generated by the robot's rigid shape in motion. Each fiducial is identified with a point belonging to a sparse 3D geometrical model of robot's structure. Such model allows direct pose estimation from image measurements and it can be easily enriched at each iteration with new points as the robot motion evolves. The entire process is solved online by using recursive Bayesian inference of the present pose given the measurements. The approach allows to model properly uncertainty in measurements and estimations, at the same time it serves as a regularization step in pose estimation. Initialization is solved by using odometry information available in the robot, jointly with image measurements to generate a geometrical model. A bundle-adjustment technique is used to properly model odometry drift error. The proposed approach is verified using simulated and real data.","PeriodicalId":164902,"journal":{"name":"2007 IEEE International Symposium on Intelligent Signal Processing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Pose and Sparse Structure of a Mobile Robot using an External Camera\",\"authors\":\"D. Pizarro, E. Santiso, M. Mazo, M. Marrón\",\"doi\":\"10.1109/WISP.2007.4447642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a system capable of obtaining the 3D pose of a mobile robot using an external calibrated camera is proposed. The system robustly tracks point fiducials in the image plane generated by the robot's rigid shape in motion. Each fiducial is identified with a point belonging to a sparse 3D geometrical model of robot's structure. Such model allows direct pose estimation from image measurements and it can be easily enriched at each iteration with new points as the robot motion evolves. The entire process is solved online by using recursive Bayesian inference of the present pose given the measurements. The approach allows to model properly uncertainty in measurements and estimations, at the same time it serves as a regularization step in pose estimation. Initialization is solved by using odometry information available in the robot, jointly with image measurements to generate a geometrical model. A bundle-adjustment technique is used to properly model odometry drift error. The proposed approach is verified using simulated and real data.\",\"PeriodicalId\":164902,\"journal\":{\"name\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISP.2007.4447642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Intelligent Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISP.2007.4447642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种利用外置标定相机获取移动机器人三维姿态的系统。该系统鲁棒地跟踪由机器人运动时的刚性形状产生的图像平面上的点基准。每个基准点被识别为属于机器人结构的稀疏三维几何模型的一个点。这种模型可以直接从图像测量中估计姿态,并且随着机器人运动的发展,它可以很容易地在每次迭代中添加新的点。整个过程通过对给定测量值的当前位姿进行递归贝叶斯推理在线求解。该方法可以对测量和估计中的不确定性进行适当的建模,同时也可以作为姿态估计的正则化步骤。初始化是利用机器人中可用的里程信息,结合图像测量来生成几何模型。采用束平差技术对测程漂移误差进行了合理的建模。仿真和实际数据验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pose and Sparse Structure of a Mobile Robot using an External Camera
In this paper a system capable of obtaining the 3D pose of a mobile robot using an external calibrated camera is proposed. The system robustly tracks point fiducials in the image plane generated by the robot's rigid shape in motion. Each fiducial is identified with a point belonging to a sparse 3D geometrical model of robot's structure. Such model allows direct pose estimation from image measurements and it can be easily enriched at each iteration with new points as the robot motion evolves. The entire process is solved online by using recursive Bayesian inference of the present pose given the measurements. The approach allows to model properly uncertainty in measurements and estimations, at the same time it serves as a regularization step in pose estimation. Initialization is solved by using odometry information available in the robot, jointly with image measurements to generate a geometrical model. A bundle-adjustment technique is used to properly model odometry drift error. The proposed approach is verified using simulated and real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent Developments in All-Optical Nonlinear Signal Processing for Fiber-Optic Communications Robust Ultrasonic Spread-Spectrum Positioning System using a AoA/ToA Method Distributed perception for a group of legged robots Advanced Multisensorial Barrier for Obstacle Detection Visual Model Feature Tracking For UAV Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1