沉浸式虚拟世界中通过过滤时间序列分析的学生轨迹差异

J. Reilly, C. Dede
{"title":"沉浸式虚拟世界中通过过滤时间序列分析的学生轨迹差异","authors":"J. Reilly, C. Dede","doi":"10.1145/3303772.3303832","DOIUrl":null,"url":null,"abstract":"To scaffold students' investigations of an inquiry-based immersive virtual world for science education without undercutting the affordances an open-ended activity provides, this study explores ways time-stamped log files of groups' actions may enable the automatic generation of formative supports. Groups' logged actions in the virtual world are filtered via principal component analysis to provide a time series trajectory showing the rate of their investigative activities over time. This technique functions well in open-ended environments and examines the entire course of their experience in the virtual world instead of specific subsequences. Groups' trajectories are grouped via k-means clustering to identify different typical pathways taken through the immersive virtual world. These different approaches are then correlated with learning gains across several survey constructs (affective dimensions, ecosystem science content, understanding of causality, and experimental methods) to see how various trends are associated with different outcomes. Differences by teacher and school are explored to see how best to support inclusion and success of a diverse array of learners.","PeriodicalId":382957,"journal":{"name":"Proceedings of the 9th International Conference on Learning Analytics & Knowledge","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Differences in Student Trajectories via Filtered Time Series Analysis in an Immersive Virtual World\",\"authors\":\"J. Reilly, C. Dede\",\"doi\":\"10.1145/3303772.3303832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To scaffold students' investigations of an inquiry-based immersive virtual world for science education without undercutting the affordances an open-ended activity provides, this study explores ways time-stamped log files of groups' actions may enable the automatic generation of formative supports. Groups' logged actions in the virtual world are filtered via principal component analysis to provide a time series trajectory showing the rate of their investigative activities over time. This technique functions well in open-ended environments and examines the entire course of their experience in the virtual world instead of specific subsequences. Groups' trajectories are grouped via k-means clustering to identify different typical pathways taken through the immersive virtual world. These different approaches are then correlated with learning gains across several survey constructs (affective dimensions, ecosystem science content, understanding of causality, and experimental methods) to see how various trends are associated with different outcomes. Differences by teacher and school are explored to see how best to support inclusion and success of a diverse array of learners.\",\"PeriodicalId\":382957,\"journal\":{\"name\":\"Proceedings of the 9th International Conference on Learning Analytics & Knowledge\",\"volume\":\"216 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Conference on Learning Analytics & Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3303772.3303832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Learning Analytics & Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3303772.3303832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

为了在不削弱开放式活动提供的支持的情况下,支持学生对科学教育中基于探究的沉浸式虚拟世界的调查,本研究探索了小组行为的时间戳日志文件可以自动生成形成性支持的方法。小组在虚拟世界中记录的行为通过主成分分析进行过滤,以提供一个时间序列轨迹,显示他们的调查活动随时间的变化速度。这一技术在开放式环境中发挥了很好的作用,并检查了他们在虚拟世界中的整个体验过程,而不是特定的子序列。群体的轨迹通过k-means聚类进行分组,以确定在沉浸式虚拟世界中采取的不同典型路径。然后将这些不同的方法与几个调查结构(情感维度、生态系统科学内容、对因果关系的理解和实验方法)中的学习收益相关联,以了解不同趋势如何与不同结果相关联。探讨了教师和学校的差异,以了解如何最好地支持各种学习者的包容和成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differences in Student Trajectories via Filtered Time Series Analysis in an Immersive Virtual World
To scaffold students' investigations of an inquiry-based immersive virtual world for science education without undercutting the affordances an open-ended activity provides, this study explores ways time-stamped log files of groups' actions may enable the automatic generation of formative supports. Groups' logged actions in the virtual world are filtered via principal component analysis to provide a time series trajectory showing the rate of their investigative activities over time. This technique functions well in open-ended environments and examines the entire course of their experience in the virtual world instead of specific subsequences. Groups' trajectories are grouped via k-means clustering to identify different typical pathways taken through the immersive virtual world. These different approaches are then correlated with learning gains across several survey constructs (affective dimensions, ecosystem science content, understanding of causality, and experimental methods) to see how various trends are associated with different outcomes. Differences by teacher and school are explored to see how best to support inclusion and success of a diverse array of learners.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DiAd: Domain Adaptation for Learning at Scale Top Concept Networks of Professional Education Reflections Exploring the Subtleties of Agency and Indirect Control in Digital Learning Games Exploring Learner Engagement Patterns in Teach-Outs Using Topic, Sentiment and On-topicness to Reflect on Pedagogy An Analysis of Student Representation, Representative Features and Classification Algorithms to Predict Degree Dropout
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1