{"title":"对非平稳环境具有高精度和高自适应率的遍历离散估计学习自动机","authors":"A. Vasilakos, G. Papadimitriou","doi":"10.1109/TAI.1990.130342","DOIUrl":null,"url":null,"abstract":"A novel ergodic discretized learning automaton which is epsilon-optimal is introduced. It utilizes a novel estimator learning algorithm which is based on the recent history of the environmental responses and is able to operate in nonstationary stochastic environments. The proposed automaton achieves significantly higher performance than the classical reward-penalty ergodic schemes. Extensive simulation results indicate the superiority of the proposed scheme. Furthermore, it is proved that it is epsilon-optimal in every stochastic environment.<<ETX>>","PeriodicalId":366276,"journal":{"name":"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Ergodic discretized estimator learning automata with high accuracy and high adaptation rate for nonstationary environments\",\"authors\":\"A. Vasilakos, G. Papadimitriou\",\"doi\":\"10.1109/TAI.1990.130342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel ergodic discretized learning automaton which is epsilon-optimal is introduced. It utilizes a novel estimator learning algorithm which is based on the recent history of the environmental responses and is able to operate in nonstationary stochastic environments. The proposed automaton achieves significantly higher performance than the classical reward-penalty ergodic schemes. Extensive simulation results indicate the superiority of the proposed scheme. Furthermore, it is proved that it is epsilon-optimal in every stochastic environment.<<ETX>>\",\"PeriodicalId\":366276,\"journal\":{\"name\":\"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1990.130342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1990.130342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ergodic discretized estimator learning automata with high accuracy and high adaptation rate for nonstationary environments
A novel ergodic discretized learning automaton which is epsilon-optimal is introduced. It utilizes a novel estimator learning algorithm which is based on the recent history of the environmental responses and is able to operate in nonstationary stochastic environments. The proposed automaton achieves significantly higher performance than the classical reward-penalty ergodic schemes. Extensive simulation results indicate the superiority of the proposed scheme. Furthermore, it is proved that it is epsilon-optimal in every stochastic environment.<>