基于粒子群理论的混合实编码量子进化算法

Md. Amjad Hossain, Md. Kowsar Hossain, M. Hashem
{"title":"基于粒子群理论的混合实编码量子进化算法","authors":"Md. Amjad Hossain, Md. Kowsar Hossain, M. Hashem","doi":"10.1109/ICCIT.2009.5407175","DOIUrl":null,"url":null,"abstract":"This paper proposes a Hybrid Real-coded Quantum Evolutionary Algorithm (HRCQEA) for optimizing complex functions on the basis of the concept of quantum computing such as qubits and superposition of states and Particle Swarm Optimization (PSO). It combines PSO with Real-coded Quantum Evolutionary Algorithm (RCQEA) to improve the performance of RCQEA. The main idea of HRCQEA is to embed the evolutionary equation of PSO in the evolutionary operator of RCQEA. In HRCQEA, each triploid chromosome represents a particle and the position of the particle is updated using Complementary Double Mutation Operator (CDMO) and Quantum Rotation Gate (QRG), which can make the balance between exploration and exploitation. Discrete Crossover (DC) is employed to expand the search space and Hill-climbing selection (HCS) helps to accelerate the convergence speed. Simulation results of four benchmark complex functions with high dimensions show that HRCQEA performs better than other algorithms in terms of ability to discover of global optimum.","PeriodicalId":443258,"journal":{"name":"2009 12th International Conference on Computers and Information Technology","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Hybrid Real-coded Quantum Evolutionary Algorithm based on particle swarm theory\",\"authors\":\"Md. Amjad Hossain, Md. Kowsar Hossain, M. Hashem\",\"doi\":\"10.1109/ICCIT.2009.5407175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a Hybrid Real-coded Quantum Evolutionary Algorithm (HRCQEA) for optimizing complex functions on the basis of the concept of quantum computing such as qubits and superposition of states and Particle Swarm Optimization (PSO). It combines PSO with Real-coded Quantum Evolutionary Algorithm (RCQEA) to improve the performance of RCQEA. The main idea of HRCQEA is to embed the evolutionary equation of PSO in the evolutionary operator of RCQEA. In HRCQEA, each triploid chromosome represents a particle and the position of the particle is updated using Complementary Double Mutation Operator (CDMO) and Quantum Rotation Gate (QRG), which can make the balance between exploration and exploitation. Discrete Crossover (DC) is employed to expand the search space and Hill-climbing selection (HCS) helps to accelerate the convergence speed. Simulation results of four benchmark complex functions with high dimensions show that HRCQEA performs better than other algorithms in terms of ability to discover of global optimum.\",\"PeriodicalId\":443258,\"journal\":{\"name\":\"2009 12th International Conference on Computers and Information Technology\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 12th International Conference on Computers and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIT.2009.5407175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 12th International Conference on Computers and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT.2009.5407175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

基于量子比特、态叠加和粒子群优化等量子计算概念,提出了一种用于复杂函数优化的混合实编码量子进化算法(HRCQEA)。将粒子群算法与实编码量子进化算法(RCQEA)相结合,提高了RCQEA算法的性能。HRCQEA的主要思想是将粒子群的进化方程嵌入到RCQEA的进化算子中。在HRCQEA中,每条三倍体染色体代表一个粒子,利用互补双突变算子(CDMO)和量子旋转门(QRG)更新粒子的位置,实现了探索和利用的平衡。采用离散交叉(DC)扩展搜索空间,采用爬坡选择(HCS)加快收敛速度。对四个高维基准复杂函数的仿真结果表明,HRCQEA算法在全局最优发现能力方面优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Real-coded Quantum Evolutionary Algorithm based on particle swarm theory
This paper proposes a Hybrid Real-coded Quantum Evolutionary Algorithm (HRCQEA) for optimizing complex functions on the basis of the concept of quantum computing such as qubits and superposition of states and Particle Swarm Optimization (PSO). It combines PSO with Real-coded Quantum Evolutionary Algorithm (RCQEA) to improve the performance of RCQEA. The main idea of HRCQEA is to embed the evolutionary equation of PSO in the evolutionary operator of RCQEA. In HRCQEA, each triploid chromosome represents a particle and the position of the particle is updated using Complementary Double Mutation Operator (CDMO) and Quantum Rotation Gate (QRG), which can make the balance between exploration and exploitation. Discrete Crossover (DC) is employed to expand the search space and Hill-climbing selection (HCS) helps to accelerate the convergence speed. Simulation results of four benchmark complex functions with high dimensions show that HRCQEA performs better than other algorithms in terms of ability to discover of global optimum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content clustering of Computer Mediated Courseware using data mining technique An audible Bangla text-entry method in Mobile phones with intelligent keypad Design of meandering probe fed microstrip patch antenna for wireless communication system Can Information Retrieval techniques automatic assessment challenges? Logical clock based Last Update Consistency model for Distributed Shared Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1