Shahrzad Khayatbashi, Sebastián Ferrada, O. Hartig
{"title":"将属性图转换为RDF:对不同映射的实际影响的初步研究","authors":"Shahrzad Khayatbashi, Sebastián Ferrada, O. Hartig","doi":"10.1145/3534540.3534695","DOIUrl":null,"url":null,"abstract":"Today's space of graph database solutions is characterized by two main technology stacks that have evolved separate from one another: on one hand, there are systems that focus on supporting the RDF family of standards; on the other hand, there is the Property Graph category of systems. As a basis for bringing these stacks together and, in particular, to facilitate data exchange between the different types of systems, different direct mappings between the underlying graph data models have been introduced in the literature. While fundamental properties are well-documented for most of these mappings, the same cannot be said about the practical implications of choosing one mapping over another. Our research aims to contribute towards closing this gap. In this paper we report on a preliminary study for which we have selected two direct mappings from (Labeled) Property Graphs to RDF, where one of them uses features of the RDF-star extension to RDF. We compare these mappings in terms of the query performance achieved by two popular commercial RDF stores, GraphDB and Stardog, in which the converted data is imported. While we find that, for both of these systems, none of the mappings is a clear winner in terms of guaranteeing better query performance, we also identify types of queries that are problematic for the systems when using one mapping but not the other.","PeriodicalId":309669,"journal":{"name":"Proceedings of the 5th ACM SIGMOD Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Converting property graphs to RDF: a preliminary study of the practical impact of different mappings\",\"authors\":\"Shahrzad Khayatbashi, Sebastián Ferrada, O. Hartig\",\"doi\":\"10.1145/3534540.3534695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today's space of graph database solutions is characterized by two main technology stacks that have evolved separate from one another: on one hand, there are systems that focus on supporting the RDF family of standards; on the other hand, there is the Property Graph category of systems. As a basis for bringing these stacks together and, in particular, to facilitate data exchange between the different types of systems, different direct mappings between the underlying graph data models have been introduced in the literature. While fundamental properties are well-documented for most of these mappings, the same cannot be said about the practical implications of choosing one mapping over another. Our research aims to contribute towards closing this gap. In this paper we report on a preliminary study for which we have selected two direct mappings from (Labeled) Property Graphs to RDF, where one of them uses features of the RDF-star extension to RDF. We compare these mappings in terms of the query performance achieved by two popular commercial RDF stores, GraphDB and Stardog, in which the converted data is imported. While we find that, for both of these systems, none of the mappings is a clear winner in terms of guaranteeing better query performance, we also identify types of queries that are problematic for the systems when using one mapping but not the other.\",\"PeriodicalId\":309669,\"journal\":{\"name\":\"Proceedings of the 5th ACM SIGMOD Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th ACM SIGMOD Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3534540.3534695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM SIGMOD Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3534540.3534695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Converting property graphs to RDF: a preliminary study of the practical impact of different mappings
Today's space of graph database solutions is characterized by two main technology stacks that have evolved separate from one another: on one hand, there are systems that focus on supporting the RDF family of standards; on the other hand, there is the Property Graph category of systems. As a basis for bringing these stacks together and, in particular, to facilitate data exchange between the different types of systems, different direct mappings between the underlying graph data models have been introduced in the literature. While fundamental properties are well-documented for most of these mappings, the same cannot be said about the practical implications of choosing one mapping over another. Our research aims to contribute towards closing this gap. In this paper we report on a preliminary study for which we have selected two direct mappings from (Labeled) Property Graphs to RDF, where one of them uses features of the RDF-star extension to RDF. We compare these mappings in terms of the query performance achieved by two popular commercial RDF stores, GraphDB and Stardog, in which the converted data is imported. While we find that, for both of these systems, none of the mappings is a clear winner in terms of guaranteeing better query performance, we also identify types of queries that are problematic for the systems when using one mapping but not the other.