光伏并网住宅合作社电能消耗预测

J. Solis, T. Oka, J. Ericsson, M. Nilsson
{"title":"光伏并网住宅合作社电能消耗预测","authors":"J. Solis, T. Oka, J. Ericsson, M. Nilsson","doi":"10.1109/icSmartGrid48354.2019.8990767","DOIUrl":null,"url":null,"abstract":"Our research aims to develop an adaptive control system for photovoltaic systems with energy storage that adapts after changing different kinds of conditions. In particular, for efficient controlling of battery storage, the precise prediction of electricity consumption is required. Due to the complexity of the proposed research, in this paper, we proposed the simplification of the complexity of the long short-term memory model for the forecasting of the electric energy consumption from a house cooperative in Karlstad, Sweden. Based on the experimental results, there is a 1.233 kWh of mean absolute error and 1.859 kWh of root-mean square error for the predicted energy consumption (validated from testing data collected 7 days after the collected training data for the selected deep learning model).","PeriodicalId":403137,"journal":{"name":"2019 7th International Conference on Smart Grid (icSmartGrid)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Forecasting of Electric Energy Consumption for Housing Cooperative with a Grid Connected PV System\",\"authors\":\"J. Solis, T. Oka, J. Ericsson, M. Nilsson\",\"doi\":\"10.1109/icSmartGrid48354.2019.8990767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our research aims to develop an adaptive control system for photovoltaic systems with energy storage that adapts after changing different kinds of conditions. In particular, for efficient controlling of battery storage, the precise prediction of electricity consumption is required. Due to the complexity of the proposed research, in this paper, we proposed the simplification of the complexity of the long short-term memory model for the forecasting of the electric energy consumption from a house cooperative in Karlstad, Sweden. Based on the experimental results, there is a 1.233 kWh of mean absolute error and 1.859 kWh of root-mean square error for the predicted energy consumption (validated from testing data collected 7 days after the collected training data for the selected deep learning model).\",\"PeriodicalId\":403137,\"journal\":{\"name\":\"2019 7th International Conference on Smart Grid (icSmartGrid)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 7th International Conference on Smart Grid (icSmartGrid)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icSmartGrid48354.2019.8990767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Conference on Smart Grid (icSmartGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icSmartGrid48354.2019.8990767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们的研究目标是开发一种能适应不同条件变化的储能光伏系统自适应控制系统。特别是,为了有效地控制电池的存储,需要精确的电力消耗预测。由于研究的复杂性,在本文中,我们提出了简化长短期记忆模型的复杂性来预测瑞典卡尔斯塔德的一个家庭合作社的电力消耗。根据实验结果,预测能耗的平均绝对误差为1.233 kWh,均方根误差为1.859 kWh(从所选深度学习模型收集的训练数据7天后收集的测试数据进行验证)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting of Electric Energy Consumption for Housing Cooperative with a Grid Connected PV System
Our research aims to develop an adaptive control system for photovoltaic systems with energy storage that adapts after changing different kinds of conditions. In particular, for efficient controlling of battery storage, the precise prediction of electricity consumption is required. Due to the complexity of the proposed research, in this paper, we proposed the simplification of the complexity of the long short-term memory model for the forecasting of the electric energy consumption from a house cooperative in Karlstad, Sweden. Based on the experimental results, there is a 1.233 kWh of mean absolute error and 1.859 kWh of root-mean square error for the predicted energy consumption (validated from testing data collected 7 days after the collected training data for the selected deep learning model).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Method for Performability Study on Wide Area Communication Architectures for Smart Grid Robust Controller Based on Sliding Mode Technique of DFIG Integrated to Wind Energy System Movement Based Energy Management Models for Smart Buildings Integrated Smart Heating System in Historic Buildings The use of Dynamic Tariff by The Utilities to Counter act The Influence of Renewable Energy Sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1