一种有效的CUDA gpu嵌套线程级并行的矢量化方法

Shixiong Xu, David Gregg
{"title":"一种有效的CUDA gpu嵌套线程级并行的矢量化方法","authors":"Shixiong Xu, David Gregg","doi":"10.1109/PACT.2015.56","DOIUrl":null,"url":null,"abstract":"Nested thread-level parallelism (TLP) is pervasive in real applications. For example, 75% (14 out of 19) of the applications in the Rodinia benchmark for heterogeneous accelerators contain kernels with nested thread-level parallelism. Efficiently mapping the enclosed nested parallelism to the GPU threads in the C-to-CUDA compilation (OpenACC in this paper) is becoming more and more important. This mapping problem is two folds: suitable execution models and efficient mapping strategies of the nested parallelism.","PeriodicalId":385398,"journal":{"name":"2015 International Conference on Parallel Architecture and Compilation (PACT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Vectorization Approach to Nested Thread-level Parallelism for CUDA GPUs\",\"authors\":\"Shixiong Xu, David Gregg\",\"doi\":\"10.1109/PACT.2015.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nested thread-level parallelism (TLP) is pervasive in real applications. For example, 75% (14 out of 19) of the applications in the Rodinia benchmark for heterogeneous accelerators contain kernels with nested thread-level parallelism. Efficiently mapping the enclosed nested parallelism to the GPU threads in the C-to-CUDA compilation (OpenACC in this paper) is becoming more and more important. This mapping problem is two folds: suitable execution models and efficient mapping strategies of the nested parallelism.\",\"PeriodicalId\":385398,\"journal\":{\"name\":\"2015 International Conference on Parallel Architecture and Compilation (PACT)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Parallel Architecture and Compilation (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACT.2015.56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Parallel Architecture and Compilation (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2015.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

嵌套线程级并行(TLP)在实际应用程序中非常普遍。例如,在针对异构加速器的Rodinia基准测试中,75%(19个中的14个)应用程序包含嵌套线程级并行性的内核。在C-to-CUDA编译(本文称为OpenACC)中,将封闭的嵌套并行性有效地映射到GPU线程变得越来越重要。这个映射问题包括两个方面:合适的执行模型和有效的嵌套并行映射策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient Vectorization Approach to Nested Thread-level Parallelism for CUDA GPUs
Nested thread-level parallelism (TLP) is pervasive in real applications. For example, 75% (14 out of 19) of the applications in the Rodinia benchmark for heterogeneous accelerators contain kernels with nested thread-level parallelism. Efficiently mapping the enclosed nested parallelism to the GPU threads in the C-to-CUDA compilation (OpenACC in this paper) is becoming more and more important. This mapping problem is two folds: suitable execution models and efficient mapping strategies of the nested parallelism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Storage Consolidation on SSDs: Not Always a Panacea, but Can We Ease the Pain? AREP: Adaptive Resource Efficient Prefetching for Maximizing Multicore Performance NVMMU: A Non-volatile Memory Management Unit for Heterogeneous GPU-SSD Architectures Scalable Task Scheduling and Synchronization Using Hierarchical Effects Scalable SIMD-Efficient Graph Processing on GPUs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1