Sefatul Wasi, S. Alam, Rashedur M. Rahman, M. A. Amin, Syoji Kobashi
{"title":"基于迁移学习的腹部CT图像肾肿瘤识别","authors":"Sefatul Wasi, S. Alam, Rashedur M. Rahman, M. A. Amin, Syoji Kobashi","doi":"10.1109/ISMVL57333.2023.00021","DOIUrl":null,"url":null,"abstract":"Kidney tumor is a health concern that affects kidney cells and may leads to mortality depending on their type. Benign tumors can be unproblematic whereas malignant tumors pose the threat of kidney cancer. Early detection and diagnosis are possible through kidney tumor recognition based on deep learning techniques. In this paper, a method based on transfer learning using deep convolutional neural network (DCNN) is proposed to recognize kidney tumor from computed tomography (CT) images. The proposed method was evaluated on 5284 images. The final accuracy, precision, recall, specificity and F1 score were 92.54%, 80.45%, 93.02%, 92.38% and 0.8628, respectively.","PeriodicalId":419220,"journal":{"name":"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kidney Tumor Recognition from Abdominal CT Images using Transfer Learning\",\"authors\":\"Sefatul Wasi, S. Alam, Rashedur M. Rahman, M. A. Amin, Syoji Kobashi\",\"doi\":\"10.1109/ISMVL57333.2023.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kidney tumor is a health concern that affects kidney cells and may leads to mortality depending on their type. Benign tumors can be unproblematic whereas malignant tumors pose the threat of kidney cancer. Early detection and diagnosis are possible through kidney tumor recognition based on deep learning techniques. In this paper, a method based on transfer learning using deep convolutional neural network (DCNN) is proposed to recognize kidney tumor from computed tomography (CT) images. The proposed method was evaluated on 5284 images. The final accuracy, precision, recall, specificity and F1 score were 92.54%, 80.45%, 93.02%, 92.38% and 0.8628, respectively.\",\"PeriodicalId\":419220,\"journal\":{\"name\":\"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL57333.2023.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL57333.2023.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kidney Tumor Recognition from Abdominal CT Images using Transfer Learning
Kidney tumor is a health concern that affects kidney cells and may leads to mortality depending on their type. Benign tumors can be unproblematic whereas malignant tumors pose the threat of kidney cancer. Early detection and diagnosis are possible through kidney tumor recognition based on deep learning techniques. In this paper, a method based on transfer learning using deep convolutional neural network (DCNN) is proposed to recognize kidney tumor from computed tomography (CT) images. The proposed method was evaluated on 5284 images. The final accuracy, precision, recall, specificity and F1 score were 92.54%, 80.45%, 93.02%, 92.38% and 0.8628, respectively.