基于粗糙集支持向量机的空间图像分类精度评价

D. Vasundhara, M. Seetha
{"title":"基于粗糙集支持向量机的空间图像分类精度评价","authors":"D. Vasundhara, M. Seetha","doi":"10.1504/IJKL.2018.10013491","DOIUrl":null,"url":null,"abstract":"There exist many traditional spatial image classification techniques which are developed over past years and exists in literature. Today, expert systems along with machine learning methods are getting universality in this area due to effective classification. This paper presents Rough set based support vector machine (SVM) classification (RS-SVM) method. In this technique, Rough set (RS) is used as a feature selection mathematical tool which eliminates the redundant features. Further, this reduced dimensionality dataset is given to SVM classifier. This process improves the classification accuracy and performance. We have performed experiments using standard geospatial images for above-proposed method for classification.","PeriodicalId":163161,"journal":{"name":"Int. J. Knowl. Learn.","volume":"60 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Accuracy assessment of rough set based SVM technique for spatial image classification\",\"authors\":\"D. Vasundhara, M. Seetha\",\"doi\":\"10.1504/IJKL.2018.10013491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There exist many traditional spatial image classification techniques which are developed over past years and exists in literature. Today, expert systems along with machine learning methods are getting universality in this area due to effective classification. This paper presents Rough set based support vector machine (SVM) classification (RS-SVM) method. In this technique, Rough set (RS) is used as a feature selection mathematical tool which eliminates the redundant features. Further, this reduced dimensionality dataset is given to SVM classifier. This process improves the classification accuracy and performance. We have performed experiments using standard geospatial images for above-proposed method for classification.\",\"PeriodicalId\":163161,\"journal\":{\"name\":\"Int. J. Knowl. Learn.\",\"volume\":\"60 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Learn.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJKL.2018.10013491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJKL.2018.10013491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

传统的空间图像分类技术有很多,都是经过多年的发展而形成的。今天,由于有效的分类,专家系统和机器学习方法在这一领域得到了广泛的应用。提出了基于粗糙集的支持向量机(SVM)分类方法。在该技术中,使用粗糙集作为特征选择的数学工具,消除了冗余特征。进一步,将该降维数据集提供给SVM分类器。这个过程提高了分类的准确性和性能。我们使用标准地理空间图像对上述分类方法进行了实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accuracy assessment of rough set based SVM technique for spatial image classification
There exist many traditional spatial image classification techniques which are developed over past years and exists in literature. Today, expert systems along with machine learning methods are getting universality in this area due to effective classification. This paper presents Rough set based support vector machine (SVM) classification (RS-SVM) method. In this technique, Rough set (RS) is used as a feature selection mathematical tool which eliminates the redundant features. Further, this reduced dimensionality dataset is given to SVM classifier. This process improves the classification accuracy and performance. We have performed experiments using standard geospatial images for above-proposed method for classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification, assessment and ranking agile software development critical success factors - a factor analysis approach Higher education and financial crisis: a systematic literature review and future research agenda Modelling an environmental context for collaborative research productivity: perceptions about knowledge sharing from Pakistani universities Effect of organisational learning and knowledge management on organisational performance in HEI, India Cooperation and relationship in the triple helix model of innovation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1