交互式数据分析:新前沿

S. Madden
{"title":"交互式数据分析:新前沿","authors":"S. Madden","doi":"10.1145/2806777.2809956","DOIUrl":null,"url":null,"abstract":"Data analytics often involves data exploration, where a data set is repeatedly analyzed to understand root causes, find patterns, or extract insights. Such analysis is frequently bottlenecked by the underlying data processing system, as analysts wait for their queries to complete against a complex multilayered software stack. In this talk, I'll describe some exploratory analytics applications we've build in the MIT database group over the past few years, and will then describe some of the challenges and opportunities that arise when building more efficient data exploration systems that will allow these applications to become truly interactive, even when processing billions of data points.","PeriodicalId":275158,"journal":{"name":"Proceedings of the Sixth ACM Symposium on Cloud Computing","volume":"13 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Interactive data analytics: the new frontier\",\"authors\":\"S. Madden\",\"doi\":\"10.1145/2806777.2809956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data analytics often involves data exploration, where a data set is repeatedly analyzed to understand root causes, find patterns, or extract insights. Such analysis is frequently bottlenecked by the underlying data processing system, as analysts wait for their queries to complete against a complex multilayered software stack. In this talk, I'll describe some exploratory analytics applications we've build in the MIT database group over the past few years, and will then describe some of the challenges and opportunities that arise when building more efficient data exploration systems that will allow these applications to become truly interactive, even when processing billions of data points.\",\"PeriodicalId\":275158,\"journal\":{\"name\":\"Proceedings of the Sixth ACM Symposium on Cloud Computing\",\"volume\":\"13 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth ACM Symposium on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2806777.2809956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth ACM Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2806777.2809956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

数据分析通常涉及数据探索,其中反复分析数据集以了解根本原因、查找模式或提取见解。这种分析经常受到底层数据处理系统的瓶颈,因为分析人员需要等待他们的查询在复杂的多层软件堆栈上完成。在这次演讲中,我将描述我们在过去几年中在麻省理工学院数据库组中建立的一些探索性分析应用程序,然后将描述在构建更有效的数据探索系统时出现的一些挑战和机遇,这些系统将允许这些应用程序成为真正的交互,即使在处理数十亿数据点时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interactive data analytics: the new frontier
Data analytics often involves data exploration, where a data set is repeatedly analyzed to understand root causes, find patterns, or extract insights. Such analysis is frequently bottlenecked by the underlying data processing system, as analysts wait for their queries to complete against a complex multilayered software stack. In this talk, I'll describe some exploratory analytics applications we've build in the MIT database group over the past few years, and will then describe some of the challenges and opportunities that arise when building more efficient data exploration systems that will allow these applications to become truly interactive, even when processing billions of data points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Software-defined caching: managing caches in multi-tenant data centers Managed communication and consistency for fast data-parallel iterative analytics MemcachedGPU: scaling-up scale-out key-value stores Database high availability using SHADOW systems Proceedings of the Sixth ACM Symposium on Cloud Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1