远距离医疗中高效非接触式测量的摄像系统

P. Kutílek, J. Hejda, L. Lhotská, Jindrich Adolf, J. Dolezal, Michaela Hourova, Pavel Kral, Yoram Segal, Raz Birman, O. Hadar
{"title":"远距离医疗中高效非接触式测量的摄像系统","authors":"P. Kutílek, J. Hejda, L. Lhotská, Jindrich Adolf, J. Dolezal, Michaela Hourova, Pavel Kral, Yoram Segal, Raz Birman, O. Hadar","doi":"10.1109/ME49197.2020.9286647","DOIUrl":null,"url":null,"abstract":"The posture of body segments can be negatively influenced by many diseases of the nervous, visual and musculoskeletal systems. This article outlines a newly designed system and related procedures to record and evaluate anatomical body angles. The system is equipped with two mutually calibrated cameras allowing the evaluation of body movement in two anatomical planes. The hardware part of the camera system and calibration method was designed for practical use in clinical practice. Moreover, the proposed camera system allows for the recording and evaluation of motion data in a home environment or at a safe distance. It enables non-invasive and non-contact measuring of body segments and, therefore, can be used in distance rehabilitation and distance diagnosing. The study also demonstrates the hardware’s performance accelerator based on a human body tracking algorithm. The device utilizes the third party algorithms, such as OpenPose, for the extraction of major body points from selected video frames. Any missing data points are then interpolated through the proposed tracking algorithm. This procedure results in an acceleration of the overall hardware performance.","PeriodicalId":166043,"journal":{"name":"2020 19th International Conference on Mechatronics - Mechatronika (ME)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Camera System for Efficient non-contact Measurement in Distance Medicine\",\"authors\":\"P. Kutílek, J. Hejda, L. Lhotská, Jindrich Adolf, J. Dolezal, Michaela Hourova, Pavel Kral, Yoram Segal, Raz Birman, O. Hadar\",\"doi\":\"10.1109/ME49197.2020.9286647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The posture of body segments can be negatively influenced by many diseases of the nervous, visual and musculoskeletal systems. This article outlines a newly designed system and related procedures to record and evaluate anatomical body angles. The system is equipped with two mutually calibrated cameras allowing the evaluation of body movement in two anatomical planes. The hardware part of the camera system and calibration method was designed for practical use in clinical practice. Moreover, the proposed camera system allows for the recording and evaluation of motion data in a home environment or at a safe distance. It enables non-invasive and non-contact measuring of body segments and, therefore, can be used in distance rehabilitation and distance diagnosing. The study also demonstrates the hardware’s performance accelerator based on a human body tracking algorithm. The device utilizes the third party algorithms, such as OpenPose, for the extraction of major body points from selected video frames. Any missing data points are then interpolated through the proposed tracking algorithm. This procedure results in an acceleration of the overall hardware performance.\",\"PeriodicalId\":166043,\"journal\":{\"name\":\"2020 19th International Conference on Mechatronics - Mechatronika (ME)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 19th International Conference on Mechatronics - Mechatronika (ME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ME49197.2020.9286647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 19th International Conference on Mechatronics - Mechatronika (ME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ME49197.2020.9286647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

身体各部分的姿势会受到神经、视觉和肌肉骨骼系统的许多疾病的负面影响。本文概述了一种新设计的记录和评估解剖体角度的系统和相关程序。该系统配备了两个相互校准的摄像机,允许在两个解剖平面上评估身体运动。设计了摄像机系统的硬件部分和标定方法,以供临床实际使用。此外,所提议的摄像系统允许在家庭环境或安全距离内记录和评估运动数据。它可以实现身体部位的非侵入性和非接触式测量,因此可以用于远程康复和远程诊断。该研究还展示了基于人体跟踪算法的硬件性能加速器。该设备利用第三方算法,如OpenPose,从选定的视频帧中提取主体点。然后通过所提出的跟踪算法对缺失的数据点进行插值。这个过程会导致整体硬件性能的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Camera System for Efficient non-contact Measurement in Distance Medicine
The posture of body segments can be negatively influenced by many diseases of the nervous, visual and musculoskeletal systems. This article outlines a newly designed system and related procedures to record and evaluate anatomical body angles. The system is equipped with two mutually calibrated cameras allowing the evaluation of body movement in two anatomical planes. The hardware part of the camera system and calibration method was designed for practical use in clinical practice. Moreover, the proposed camera system allows for the recording and evaluation of motion data in a home environment or at a safe distance. It enables non-invasive and non-contact measuring of body segments and, therefore, can be used in distance rehabilitation and distance diagnosing. The study also demonstrates the hardware’s performance accelerator based on a human body tracking algorithm. The device utilizes the third party algorithms, such as OpenPose, for the extraction of major body points from selected video frames. Any missing data points are then interpolated through the proposed tracking algorithm. This procedure results in an acceleration of the overall hardware performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ME 2020 Cover Page Vibration Shapes Identification Applying Eulerian Video Magnification on Coffee Fruits to Study the Selective Harvesting Determinations of Stator Windings Thermal Model with Various Filling Factor Production of Polymer Frame Composites Using Industrial Robots The frequency characteristics of cyclic symmetry silicon gyroscope
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1