S. Weichwald, B. Scholkopf, T. Ball, M. Grosse-Wentrup
{"title":"神经影像模式识别中的因果与反因果学习","authors":"S. Weichwald, B. Scholkopf, T. Ball, M. Grosse-Wentrup","doi":"10.1109/PRNI.2014.6858551","DOIUrl":null,"url":null,"abstract":"Pattern recognition in neuroimaging distinguishes between two types of models: encoding- and decoding models. This distinction is based on the insight that brain state features, that are found to be relevant in an experimental paradigm, carry a different meaning in encoding-than in decoding models. In this paper, we argue that this distinction is not sufficient: Relevant features in encoding- and decoding models carry a different meaning depending on whether they represent causal-or anti-causal relations. We provide a theoretical justification for this argument and conclude that causal inference is essential for interpretation in neuroimaging.","PeriodicalId":133286,"journal":{"name":"2014 International Workshop on Pattern Recognition in Neuroimaging","volume":"11 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Causal and anti-causal learning in pattern recognition for neuroimaging\",\"authors\":\"S. Weichwald, B. Scholkopf, T. Ball, M. Grosse-Wentrup\",\"doi\":\"10.1109/PRNI.2014.6858551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pattern recognition in neuroimaging distinguishes between two types of models: encoding- and decoding models. This distinction is based on the insight that brain state features, that are found to be relevant in an experimental paradigm, carry a different meaning in encoding-than in decoding models. In this paper, we argue that this distinction is not sufficient: Relevant features in encoding- and decoding models carry a different meaning depending on whether they represent causal-or anti-causal relations. We provide a theoretical justification for this argument and conclude that causal inference is essential for interpretation in neuroimaging.\",\"PeriodicalId\":133286,\"journal\":{\"name\":\"2014 International Workshop on Pattern Recognition in Neuroimaging\",\"volume\":\"11 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Workshop on Pattern Recognition in Neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRNI.2014.6858551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2014.6858551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Causal and anti-causal learning in pattern recognition for neuroimaging
Pattern recognition in neuroimaging distinguishes between two types of models: encoding- and decoding models. This distinction is based on the insight that brain state features, that are found to be relevant in an experimental paradigm, carry a different meaning in encoding-than in decoding models. In this paper, we argue that this distinction is not sufficient: Relevant features in encoding- and decoding models carry a different meaning depending on whether they represent causal-or anti-causal relations. We provide a theoretical justification for this argument and conclude that causal inference is essential for interpretation in neuroimaging.