摩洛哥长期风电发展:基于自下而上模型的最优性评估

Jabrane Slimani, Abdeslam Kadrani, I. El harraki, E. Ezzahid
{"title":"摩洛哥长期风电发展:基于自下而上模型的最优性评估","authors":"Jabrane Slimani, Abdeslam Kadrani, I. El harraki, E. Ezzahid","doi":"10.1109/USSEC53120.2021.9655736","DOIUrl":null,"url":null,"abstract":"Since 2010, Morocco has been pursuing an energy strategy focused mainly on increasing the share of renewable sources in the energy mix, promoting energy efficiency, and boosting regional trade. This energy strategy plans to increase the share of renewable electricity to 42 % of installed capacity in 2020 and more than 52% in 2030. In this study, it is assumed that Morocco will continue this development of the share of renewable energies, setting new targets for 2040 and 2050, respectively, of 62% and 72%. Thus, a bottom-up linear optimization model is proposed to study the demand, production, and installed capacity of electrical energy in 2050 in Morocco. The aim is to identify the optimal trajectory for the development of the installed capacity of wind energy and its share in the electricity mix at this horizon. For this purpose, three Scenarios of wind energy development are considered. For each of these Scenarios, the impact on the electricity mix is assessed in terms of discounted global costs and greenhouse gas emissions. The results show Morocco is able to reduce its greenhouse gas emissions from the electricity sector by more than 85% compared to their current projected levels. It can also be concluded that wind energy is a more mature technology than solar photovoltaic and that natural gas production capacity should be greatly increased.","PeriodicalId":260032,"journal":{"name":"2021 Ural-Siberian Smart Energy Conference (USSEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Long-term Wind Power Development in Morocco: Optimality Assessment using Bottom-up Modeling\",\"authors\":\"Jabrane Slimani, Abdeslam Kadrani, I. El harraki, E. Ezzahid\",\"doi\":\"10.1109/USSEC53120.2021.9655736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since 2010, Morocco has been pursuing an energy strategy focused mainly on increasing the share of renewable sources in the energy mix, promoting energy efficiency, and boosting regional trade. This energy strategy plans to increase the share of renewable electricity to 42 % of installed capacity in 2020 and more than 52% in 2030. In this study, it is assumed that Morocco will continue this development of the share of renewable energies, setting new targets for 2040 and 2050, respectively, of 62% and 72%. Thus, a bottom-up linear optimization model is proposed to study the demand, production, and installed capacity of electrical energy in 2050 in Morocco. The aim is to identify the optimal trajectory for the development of the installed capacity of wind energy and its share in the electricity mix at this horizon. For this purpose, three Scenarios of wind energy development are considered. For each of these Scenarios, the impact on the electricity mix is assessed in terms of discounted global costs and greenhouse gas emissions. The results show Morocco is able to reduce its greenhouse gas emissions from the electricity sector by more than 85% compared to their current projected levels. It can also be concluded that wind energy is a more mature technology than solar photovoltaic and that natural gas production capacity should be greatly increased.\",\"PeriodicalId\":260032,\"journal\":{\"name\":\"2021 Ural-Siberian Smart Energy Conference (USSEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Ural-Siberian Smart Energy Conference (USSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/USSEC53120.2021.9655736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Ural-Siberian Smart Energy Conference (USSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/USSEC53120.2021.9655736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

自2010年以来,摩洛哥一直在推行一项能源战略,主要侧重于增加可再生能源在能源结构中的份额,提高能源效率,促进区域贸易。该能源战略计划到2020年将可再生电力的份额增加到装机容量的42%,到2030年增加到52%以上。在本研究中,假设摩洛哥将继续发展可再生能源的份额,为2040年和2050年分别设定62%和72%的新目标。因此,提出了一个自下而上的线性优化模型来研究2050年摩洛哥的电力需求、生产和装机容量。其目的是确定风电装机容量及其在电力结构中所占份额的最佳发展轨迹。为此,考虑了风能发展的三种情况。对于每一种情景,对电力结构的影响都是根据贴现的全球成本和温室气体排放来评估的。结果显示,与目前的预计水平相比,摩洛哥能够将电力部门的温室气体排放量减少85%以上。也可以得出结论,风能是一种比太阳能光伏更成熟的技术,天然气的生产能力应该大大增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Long-term Wind Power Development in Morocco: Optimality Assessment using Bottom-up Modeling
Since 2010, Morocco has been pursuing an energy strategy focused mainly on increasing the share of renewable sources in the energy mix, promoting energy efficiency, and boosting regional trade. This energy strategy plans to increase the share of renewable electricity to 42 % of installed capacity in 2020 and more than 52% in 2030. In this study, it is assumed that Morocco will continue this development of the share of renewable energies, setting new targets for 2040 and 2050, respectively, of 62% and 72%. Thus, a bottom-up linear optimization model is proposed to study the demand, production, and installed capacity of electrical energy in 2050 in Morocco. The aim is to identify the optimal trajectory for the development of the installed capacity of wind energy and its share in the electricity mix at this horizon. For this purpose, three Scenarios of wind energy development are considered. For each of these Scenarios, the impact on the electricity mix is assessed in terms of discounted global costs and greenhouse gas emissions. The results show Morocco is able to reduce its greenhouse gas emissions from the electricity sector by more than 85% compared to their current projected levels. It can also be concluded that wind energy is a more mature technology than solar photovoltaic and that natural gas production capacity should be greatly increased.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Management of Electrical Energy Consumption in Urban Residential Buildings The Energy Companies Reports Study for the Formation of Maps and Power and Energy Balances on the Example of Lithuanian Power System Investigation of Energy Storage Systems - Improvement of Utilization by Use Case Combination Renewable Energy Sources as Part of the Auxiliary Network of Small and Micro Hydropower Plants Recurrent and Ensemble Models for Short-Term Load Forecasting of Coal Mining Companies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1