S. Moon, R. Labios, B. Chang, Soo-yeol Kim, Yong-Beum Yoon
{"title":"离散傅里叶变换在韩国大型风电场储能容量分配中的应用","authors":"S. Moon, R. Labios, B. Chang, Soo-yeol Kim, Yong-Beum Yoon","doi":"10.18770/KEPCO.2016.02.03.377","DOIUrl":null,"url":null,"abstract":"In 2013, a total capacity of 591.3 MW of installed wind power generation was achieved in Korea, with a total of 1,139 MWh of wind energy generated that year. More wind power plants will be installed in the coming years, and it is important to develop methods to reduce the output variability of these resources so as to provide stable power to the power grid of Korea. In this regard, this paper proposes the use of energy storage system (ESS) as a means to stabilize the output variability of wind power plants. Presented in this paper is a method that uses Discrete Fourier Transform (DFT) to determine the ESS capacity needed to provide a stable power output for ancillary services such as frequency regulation, economic dispatch, and emergency reserves. In the first step of the proposed method, four regions (namely, Samdal, Yeongdeok, Yeongyang, and Gangwon) in Korea that had the most wind power generation capacity were selected for analysis. In the second step, the individual and aggregated wind power outputs of the selected regions in 2013 were obtained This information was then used in the third step, where DFT analysis of the power outputs was used to drive the magnitudes of the output variation. And finally, the ESS capacity requirements needed to provide different ancillary services were determined based on the magnitudes of the output variation.","PeriodicalId":445819,"journal":{"name":"KEPCO Journal on electric power and energy","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Allocation of Energy Storage Capacity for Large Wind Farms in Korea using Discrete Fourier Transform\",\"authors\":\"S. Moon, R. Labios, B. Chang, Soo-yeol Kim, Yong-Beum Yoon\",\"doi\":\"10.18770/KEPCO.2016.02.03.377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2013, a total capacity of 591.3 MW of installed wind power generation was achieved in Korea, with a total of 1,139 MWh of wind energy generated that year. More wind power plants will be installed in the coming years, and it is important to develop methods to reduce the output variability of these resources so as to provide stable power to the power grid of Korea. In this regard, this paper proposes the use of energy storage system (ESS) as a means to stabilize the output variability of wind power plants. Presented in this paper is a method that uses Discrete Fourier Transform (DFT) to determine the ESS capacity needed to provide a stable power output for ancillary services such as frequency regulation, economic dispatch, and emergency reserves. In the first step of the proposed method, four regions (namely, Samdal, Yeongdeok, Yeongyang, and Gangwon) in Korea that had the most wind power generation capacity were selected for analysis. In the second step, the individual and aggregated wind power outputs of the selected regions in 2013 were obtained This information was then used in the third step, where DFT analysis of the power outputs was used to drive the magnitudes of the output variation. And finally, the ESS capacity requirements needed to provide different ancillary services were determined based on the magnitudes of the output variation.\",\"PeriodicalId\":445819,\"journal\":{\"name\":\"KEPCO Journal on electric power and energy\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"KEPCO Journal on electric power and energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18770/KEPCO.2016.02.03.377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"KEPCO Journal on electric power and energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18770/KEPCO.2016.02.03.377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Allocation of Energy Storage Capacity for Large Wind Farms in Korea using Discrete Fourier Transform
In 2013, a total capacity of 591.3 MW of installed wind power generation was achieved in Korea, with a total of 1,139 MWh of wind energy generated that year. More wind power plants will be installed in the coming years, and it is important to develop methods to reduce the output variability of these resources so as to provide stable power to the power grid of Korea. In this regard, this paper proposes the use of energy storage system (ESS) as a means to stabilize the output variability of wind power plants. Presented in this paper is a method that uses Discrete Fourier Transform (DFT) to determine the ESS capacity needed to provide a stable power output for ancillary services such as frequency regulation, economic dispatch, and emergency reserves. In the first step of the proposed method, four regions (namely, Samdal, Yeongdeok, Yeongyang, and Gangwon) in Korea that had the most wind power generation capacity were selected for analysis. In the second step, the individual and aggregated wind power outputs of the selected regions in 2013 were obtained This information was then used in the third step, where DFT analysis of the power outputs was used to drive the magnitudes of the output variation. And finally, the ESS capacity requirements needed to provide different ancillary services were determined based on the magnitudes of the output variation.