使用双峰线性预测模型的视听语音同步检测

Kshitiz Kumar, Jirí Navrátil, E. Marcheret, V. Libal, G. Ramaswamy, G. Potamianos
{"title":"使用双峰线性预测模型的视听语音同步检测","authors":"Kshitiz Kumar, Jirí Navrátil, E. Marcheret, V. Libal, G. Ramaswamy, G. Potamianos","doi":"10.1109/CVPRW.2009.5204303","DOIUrl":null,"url":null,"abstract":"In this work, we study the problem of detecting audio-visual (AV) synchronization in video segments containing a speaker in frontal head pose. The problem holds important applications in biometrics, for example spoofing detection, and it constitutes an important step in AV segmentation necessary for deriving AV fingerprints in multimodal speaker recognition. To attack the problem, we propose a time-evolution model for AV features and derive an analytical approach to capture the notion of synchronization between them. We report results on an appropriate AV database, using two types of visual features extracted from the speaker's facial area: geometric ones and features based on the discrete cosine image transform. Our results demonstrate that the proposed approach provides substantially better AV synchrony detection over a baseline method that employs mutual information, with the geometric visual features outperforming the image transform ones.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Audio-visual speech synchronization detection using a bimodal linear prediction model\",\"authors\":\"Kshitiz Kumar, Jirí Navrátil, E. Marcheret, V. Libal, G. Ramaswamy, G. Potamianos\",\"doi\":\"10.1109/CVPRW.2009.5204303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study the problem of detecting audio-visual (AV) synchronization in video segments containing a speaker in frontal head pose. The problem holds important applications in biometrics, for example spoofing detection, and it constitutes an important step in AV segmentation necessary for deriving AV fingerprints in multimodal speaker recognition. To attack the problem, we propose a time-evolution model for AV features and derive an analytical approach to capture the notion of synchronization between them. We report results on an appropriate AV database, using two types of visual features extracted from the speaker's facial area: geometric ones and features based on the discrete cosine image transform. Our results demonstrate that the proposed approach provides substantially better AV synchrony detection over a baseline method that employs mutual information, with the geometric visual features outperforming the image transform ones.\",\"PeriodicalId\":431981,\"journal\":{\"name\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2009.5204303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在这项工作中,我们研究了在包含说话者正面头部姿势的视频片段中检测视听(AV)同步的问题。该问题在生物识别中具有重要的应用,例如欺骗检测,并且它构成了在多模态说话人识别中提取AV指纹所必需的AV分割的重要步骤。为了解决这个问题,我们提出了一个AV特征的时间演化模型,并推导了一种分析方法来捕捉它们之间的同步概念。我们在适当的AV数据库上报告结果,使用从说话者面部区域提取的两种视觉特征:几何特征和基于离散余弦图像变换的特征。我们的研究结果表明,与采用互信息的基线方法相比,该方法提供了更好的AV同步检测,其几何视觉特征优于图像变换特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Audio-visual speech synchronization detection using a bimodal linear prediction model
In this work, we study the problem of detecting audio-visual (AV) synchronization in video segments containing a speaker in frontal head pose. The problem holds important applications in biometrics, for example spoofing detection, and it constitutes an important step in AV segmentation necessary for deriving AV fingerprints in multimodal speaker recognition. To attack the problem, we propose a time-evolution model for AV features and derive an analytical approach to capture the notion of synchronization between them. We report results on an appropriate AV database, using two types of visual features extracted from the speaker's facial area: geometric ones and features based on the discrete cosine image transform. Our results demonstrate that the proposed approach provides substantially better AV synchrony detection over a baseline method that employs mutual information, with the geometric visual features outperforming the image transform ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time 3D modeling of static scenes using solely a Time-of-Flight sensor Image matching in large scale indoor environment Learning to segment using machine-learned penalized logistic models Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1