基于GCV方法的利率期限结构半参数模型及其实证比较

Shuyi Ren, Fengmei Yang, Rongxi Zhou
{"title":"基于GCV方法的利率期限结构半参数模型及其实证比较","authors":"Shuyi Ren, Fengmei Yang, Rongxi Zhou","doi":"10.1109/CSO.2011.284","DOIUrl":null,"url":null,"abstract":"In order to improve the smoothness of curve fitted by the interest rate term structure model of polynomial spline functions, the adaptive semi parametric regression with a penalized item is introduced to estimate the unknown parameters. The generalized cross-validation method is discussed to select the smoothing parameter, and genetic algorithm is applied to search the optimal smoothing parameter. Then, the empirical results show that this model with penalty function is relatively effective in China. However, the curve fitting smoothness is improved to some extend at the expense of fitting accuracy.","PeriodicalId":210815,"journal":{"name":"2011 Fourth International Joint Conference on Computational Sciences and Optimization","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Semiparametric Model of Interest Rate Term Structure Based on GCV Method and Its Empirical Comparison\",\"authors\":\"Shuyi Ren, Fengmei Yang, Rongxi Zhou\",\"doi\":\"10.1109/CSO.2011.284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the smoothness of curve fitted by the interest rate term structure model of polynomial spline functions, the adaptive semi parametric regression with a penalized item is introduced to estimate the unknown parameters. The generalized cross-validation method is discussed to select the smoothing parameter, and genetic algorithm is applied to search the optimal smoothing parameter. Then, the empirical results show that this model with penalty function is relatively effective in China. However, the curve fitting smoothness is improved to some extend at the expense of fitting accuracy.\",\"PeriodicalId\":210815,\"journal\":{\"name\":\"2011 Fourth International Joint Conference on Computational Sciences and Optimization\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Joint Conference on Computational Sciences and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSO.2011.284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Joint Conference on Computational Sciences and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2011.284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了提高多项式样条函数利率期限结构模型拟合曲线的平滑性,引入带惩罚项的自适应半参数回归对未知参数进行估计。讨论了采用广义交叉验证法选择平滑参数,并采用遗传算法搜索最优平滑参数。然后,实证结果表明,这个带有惩罚函数的模型在中国是比较有效的。但是,在一定程度上提高了曲线的拟合平滑度,牺牲了拟合精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Semiparametric Model of Interest Rate Term Structure Based on GCV Method and Its Empirical Comparison
In order to improve the smoothness of curve fitted by the interest rate term structure model of polynomial spline functions, the adaptive semi parametric regression with a penalized item is introduced to estimate the unknown parameters. The generalized cross-validation method is discussed to select the smoothing parameter, and genetic algorithm is applied to search the optimal smoothing parameter. Then, the empirical results show that this model with penalty function is relatively effective in China. However, the curve fitting smoothness is improved to some extend at the expense of fitting accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Inverse Eigenvalue Problem for a Special Kind of Matrices A Nonlinear Artificial Intelligence Ensemble Prediction Model Based on EOF for Typhoon Track Product Review Information Extraction Based on Adjective Opinion Words The Design and Implement of Meteorological Service Benefit Assessment for Huaihe River Basin with GIS Technology The Effects of Interest Rate Regulation on Real Estate Prices in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1