通用的无参考图像质量评价指标基于局部依赖性

Fei Gao, Xinbo Gao, D. Tao, Xuelong Li, Lihuo He, Wen Lu
{"title":"通用的无参考图像质量评价指标基于局部依赖性","authors":"Fei Gao, Xinbo Gao, D. Tao, Xuelong Li, Lihuo He, Wen Lu","doi":"10.1109/ACPR.2011.6166657","DOIUrl":null,"url":null,"abstract":"No reference image quality assessment (NR-IQA) is to evaluate image quality blindly without the ground truth. Most of the emerging NR-IQA algorithms are only effective for some specific distortion. Universal metrics that can work for various categories of distortions have hardly been explored, and the algorithms available are not fully adequate in performance. In this paper, we study the local dependency (LD) characteristic of natural images, and propose two universal NR-IQA metrics: LD global scheme (LD-GS) and LD two-step scheme (LD-TS). We claim that the local dependency characteristic among wavelet coefficients is disturbed by various distortion processes, and the disturbances are strongly correlated to image qualities. Experimental results on LIVE database II demonstrate that both the proposed metrics are highly consistent with the human perception and outpace the state-of-the-art NR-IQA indexes and some full reference quality indicators for diverse distortions and across the entire database.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Universal no reference image quality assessment metrics based on local dependency\",\"authors\":\"Fei Gao, Xinbo Gao, D. Tao, Xuelong Li, Lihuo He, Wen Lu\",\"doi\":\"10.1109/ACPR.2011.6166657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"No reference image quality assessment (NR-IQA) is to evaluate image quality blindly without the ground truth. Most of the emerging NR-IQA algorithms are only effective for some specific distortion. Universal metrics that can work for various categories of distortions have hardly been explored, and the algorithms available are not fully adequate in performance. In this paper, we study the local dependency (LD) characteristic of natural images, and propose two universal NR-IQA metrics: LD global scheme (LD-GS) and LD two-step scheme (LD-TS). We claim that the local dependency characteristic among wavelet coefficients is disturbed by various distortion processes, and the disturbances are strongly correlated to image qualities. Experimental results on LIVE database II demonstrate that both the proposed metrics are highly consistent with the human perception and outpace the state-of-the-art NR-IQA indexes and some full reference quality indicators for diverse distortions and across the entire database.\",\"PeriodicalId\":287232,\"journal\":{\"name\":\"The First Asian Conference on Pattern Recognition\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The First Asian Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2011.6166657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6166657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

无参考图像质量评价(NR-IQA)是在不了解实际情况的情况下对图像质量进行盲目评价。大多数新兴的NR-IQA算法仅对某些特定的失真有效。通用的指标,可以工作的各种类别的扭曲几乎没有被探索,和算法可用的不是完全足够的性能。本文研究了自然图像的局部依赖性(LD)特征,提出了两个通用的NR-IQA度量:LD全局方案(LD- gs)和LD两步方案(LD- ts)。我们认为小波系数之间的局部依赖特性会受到各种失真过程的干扰,并且这些干扰与图像质量有很强的相关性。在LIVE数据库II上的实验结果表明,所提出的两个指标与人类感知高度一致,并且超过了最先进的NR-IQA指标和一些完整的参考质量指标,适用于各种失真和整个数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Universal no reference image quality assessment metrics based on local dependency
No reference image quality assessment (NR-IQA) is to evaluate image quality blindly without the ground truth. Most of the emerging NR-IQA algorithms are only effective for some specific distortion. Universal metrics that can work for various categories of distortions have hardly been explored, and the algorithms available are not fully adequate in performance. In this paper, we study the local dependency (LD) characteristic of natural images, and propose two universal NR-IQA metrics: LD global scheme (LD-GS) and LD two-step scheme (LD-TS). We claim that the local dependency characteristic among wavelet coefficients is disturbed by various distortion processes, and the disturbances are strongly correlated to image qualities. Experimental results on LIVE database II demonstrate that both the proposed metrics are highly consistent with the human perception and outpace the state-of-the-art NR-IQA indexes and some full reference quality indicators for diverse distortions and across the entire database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geolocation based image annotation Discriminant appearance weighting for action recognition Tree crown detection in high resolution optical images during the early growth stages of Eucalyptus plantations in Brazil Designing and selecting features for MR image segmentation Adaptive Patch Alignment Based Local Binary Patterns for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1