C. Popescu, A. McClelland, D. Kazazis, G. Dawson, J. Roth, Y. Ekinci, W. Theis, A. Robinson
{"title":"电子束和极紫外光刻用多触发抗蚀剂","authors":"C. Popescu, A. McClelland, D. Kazazis, G. Dawson, J. Roth, Y. Ekinci, W. Theis, A. Robinson","doi":"10.1117/12.2316628","DOIUrl":null,"url":null,"abstract":"The multi-trigger resist (MTR) is a new negative tone molecular resist platform for electron beam lithography, as well as extreme ultraviolet and optical lithography. The performance of xMT resist, the precursor to MTR resist, which shows a good combination of sensitivity, low line edge roughness and high-resolution patterning has previously been reported.[1] In order to overcome limitations induced by acid diffusion, a new mechanism - the multi-trigger concept - has been introduced. The results obtained so far as the behaviour of the resist is driven towards the multi-trigger regime by manipulating the resist formulation are presented. A feature size of 13 nm in semi-dense (1:1.5 line/space) patterns, and 22nm diameter pillar patterns are demonstrated in electron beam, and 16 nm half-pitch resolution patterns are demonstrated in (extreme ultraviolet) EUV. An improvement in the LER value is seen in the higher MTR formulations.","PeriodicalId":287066,"journal":{"name":"European Mask and Lithography Conference","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-trigger resist for electron beam and extreme ultraviolet lithography\",\"authors\":\"C. Popescu, A. McClelland, D. Kazazis, G. Dawson, J. Roth, Y. Ekinci, W. Theis, A. Robinson\",\"doi\":\"10.1117/12.2316628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multi-trigger resist (MTR) is a new negative tone molecular resist platform for electron beam lithography, as well as extreme ultraviolet and optical lithography. The performance of xMT resist, the precursor to MTR resist, which shows a good combination of sensitivity, low line edge roughness and high-resolution patterning has previously been reported.[1] In order to overcome limitations induced by acid diffusion, a new mechanism - the multi-trigger concept - has been introduced. The results obtained so far as the behaviour of the resist is driven towards the multi-trigger regime by manipulating the resist formulation are presented. A feature size of 13 nm in semi-dense (1:1.5 line/space) patterns, and 22nm diameter pillar patterns are demonstrated in electron beam, and 16 nm half-pitch resolution patterns are demonstrated in (extreme ultraviolet) EUV. An improvement in the LER value is seen in the higher MTR formulations.\",\"PeriodicalId\":287066,\"journal\":{\"name\":\"European Mask and Lithography Conference\",\"volume\":\"153 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Mask and Lithography Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2316628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Mask and Lithography Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2316628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-trigger resist for electron beam and extreme ultraviolet lithography
The multi-trigger resist (MTR) is a new negative tone molecular resist platform for electron beam lithography, as well as extreme ultraviolet and optical lithography. The performance of xMT resist, the precursor to MTR resist, which shows a good combination of sensitivity, low line edge roughness and high-resolution patterning has previously been reported.[1] In order to overcome limitations induced by acid diffusion, a new mechanism - the multi-trigger concept - has been introduced. The results obtained so far as the behaviour of the resist is driven towards the multi-trigger regime by manipulating the resist formulation are presented. A feature size of 13 nm in semi-dense (1:1.5 line/space) patterns, and 22nm diameter pillar patterns are demonstrated in electron beam, and 16 nm half-pitch resolution patterns are demonstrated in (extreme ultraviolet) EUV. An improvement in the LER value is seen in the higher MTR formulations.