数字生态系统的形式概念分析

Huaiguo Fu
{"title":"数字生态系统的形式概念分析","authors":"Huaiguo Fu","doi":"10.1109/ICMLA.2006.24","DOIUrl":null,"url":null,"abstract":"Formal concept analysis (FCA) is an effective tool for data analysis and knowledge discovery. Concept lattice, which is derived from mathematical order theory and lattice theory, is the core of FCA. Many research works of various areas show that concept lattices structures is an effective platform for data mining, machine learning, information retrieval, software engineer, etc. This paper offers a brief overview of FCA and proposes to apply FCA as a tool for analysis and visualization of data in digital ecosystem, and also discusses the applications of data mining for digital ecosystem","PeriodicalId":297071,"journal":{"name":"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Formal Concept Analysis for Digital Ecosystem\",\"authors\":\"Huaiguo Fu\",\"doi\":\"10.1109/ICMLA.2006.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Formal concept analysis (FCA) is an effective tool for data analysis and knowledge discovery. Concept lattice, which is derived from mathematical order theory and lattice theory, is the core of FCA. Many research works of various areas show that concept lattices structures is an effective platform for data mining, machine learning, information retrieval, software engineer, etc. This paper offers a brief overview of FCA and proposes to apply FCA as a tool for analysis and visualization of data in digital ecosystem, and also discusses the applications of data mining for digital ecosystem\",\"PeriodicalId\":297071,\"journal\":{\"name\":\"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2006.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2006.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

形式概念分析(FCA)是数据分析和知识发现的有效工具。概念格是FCA的核心,它衍生自数学序理论和格理论。许多领域的研究表明,概念格结构是数据挖掘、机器学习、信息检索、软件工程等领域的有效平台。本文简要介绍了FCA的研究概况,提出将FCA作为数字生态系统中数据分析和可视化的工具,并讨论了数据挖掘在数字生态系统中的应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formal Concept Analysis for Digital Ecosystem
Formal concept analysis (FCA) is an effective tool for data analysis and knowledge discovery. Concept lattice, which is derived from mathematical order theory and lattice theory, is the core of FCA. Many research works of various areas show that concept lattices structures is an effective platform for data mining, machine learning, information retrieval, software engineer, etc. This paper offers a brief overview of FCA and proposes to apply FCA as a tool for analysis and visualization of data in digital ecosystem, and also discusses the applications of data mining for digital ecosystem
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Efficient Heuristic for Discovering Multiple Ill-Defined Attributes in Datasets Robust Model Selection Using Cross Validation: A Simple Iterative Technique for Developing Robust Gene Signatures in Biomedical Genomics Applications Detecting Web Content Function Using Generalized Hidden Markov Model Naive Bayes Classification Given Probability Estimation Trees A New Machine Learning Technique Based on Straight Line Segments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1