{"title":"用二元内生回归量估计非参数三角形模型","authors":"Sung Jae Jun, Joris Pinkse, Haiqing Xu","doi":"10.1111/ectj.12066","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We consider identification and estimation in a nonparametric triangular system with a binary endogenous regressor and nonseparable errors. For identification, we take a control function approach utilizing the Dynkin system idea. We articulate various trade-offs, including continuity, monotonicity and differentiability. For estimation, we use the idea of local instruments under smoothness assumptions, but we do not assume additive separability in latent variables. Our estimator uses nonparametric kernel regression techniques and its statistical properties are derived using the functional delta method. We establish that it is -consistent and has a limiting normal distribution. We apply the method to estimate the returns on a college education. Unlike existing work, we find that returns on a college education are consistently positive. Moreover, the returns curves we estimate are inconsistent with the shape restrictions imposed in those papers.</p></div>","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2016-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ectj.12066","citationCount":"2","resultStr":"{\"title\":\"Estimating a nonparametric triangular model with binary endogenous regressors\",\"authors\":\"Sung Jae Jun, Joris Pinkse, Haiqing Xu\",\"doi\":\"10.1111/ectj.12066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>We consider identification and estimation in a nonparametric triangular system with a binary endogenous regressor and nonseparable errors. For identification, we take a control function approach utilizing the Dynkin system idea. We articulate various trade-offs, including continuity, monotonicity and differentiability. For estimation, we use the idea of local instruments under smoothness assumptions, but we do not assume additive separability in latent variables. Our estimator uses nonparametric kernel regression techniques and its statistical properties are derived using the functional delta method. We establish that it is -consistent and has a limiting normal distribution. We apply the method to estimate the returns on a college education. Unlike existing work, we find that returns on a college education are consistently positive. Moreover, the returns curves we estimate are inconsistent with the shape restrictions imposed in those papers.</p></div>\",\"PeriodicalId\":50555,\"journal\":{\"name\":\"Econometrics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2016-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/ectj.12066\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12066\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12066","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Estimating a nonparametric triangular model with binary endogenous regressors
We consider identification and estimation in a nonparametric triangular system with a binary endogenous regressor and nonseparable errors. For identification, we take a control function approach utilizing the Dynkin system idea. We articulate various trade-offs, including continuity, monotonicity and differentiability. For estimation, we use the idea of local instruments under smoothness assumptions, but we do not assume additive separability in latent variables. Our estimator uses nonparametric kernel regression techniques and its statistical properties are derived using the functional delta method. We establish that it is -consistent and has a limiting normal distribution. We apply the method to estimate the returns on a college education. Unlike existing work, we find that returns on a college education are consistently positive. Moreover, the returns curves we estimate are inconsistent with the shape restrictions imposed in those papers.
期刊介绍:
The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.