一种分析帕金森病早期脑电图波列的方法

O. Sushkova, A. Morozov, A. Gabova
{"title":"一种分析帕金森病早期脑电图波列的方法","authors":"O. Sushkova, A. Morozov, A. Gabova","doi":"10.1109/BSB.2016.7552163","DOIUrl":null,"url":null,"abstract":"A method of analysis of EEG wave trains based on wavelets and nonparametric statistics is developed. The method is compared with standard methods based on Fourier spectra and complex Morlet wavelets by the example of Parkinson's disease experimental data. We demonstrate that these methods are complementary, that is, the standard methods and the wave train analysis method reveal sufficiently different effects in the EEG data.","PeriodicalId":363820,"journal":{"name":"2016 International Conference on Bioinformatics and Systems Biology (BSB)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A method of analysis of EEG wave trains in early stages of Parkinson's disease\",\"authors\":\"O. Sushkova, A. Morozov, A. Gabova\",\"doi\":\"10.1109/BSB.2016.7552163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method of analysis of EEG wave trains based on wavelets and nonparametric statistics is developed. The method is compared with standard methods based on Fourier spectra and complex Morlet wavelets by the example of Parkinson's disease experimental data. We demonstrate that these methods are complementary, that is, the standard methods and the wave train analysis method reveal sufficiently different effects in the EEG data.\",\"PeriodicalId\":363820,\"journal\":{\"name\":\"2016 International Conference on Bioinformatics and Systems Biology (BSB)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Bioinformatics and Systems Biology (BSB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSB.2016.7552163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Bioinformatics and Systems Biology (BSB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSB.2016.7552163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

提出了一种基于小波和非参数统计的脑电波列分析方法。以帕金森病实验数据为例,将该方法与基于傅立叶谱和复Morlet小波的标准方法进行了比较。我们证明了这些方法是互补的,即标准方法和波列分析法在脑电图数据中显示出充分不同的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A method of analysis of EEG wave trains in early stages of Parkinson's disease
A method of analysis of EEG wave trains based on wavelets and nonparametric statistics is developed. The method is compared with standard methods based on Fourier spectra and complex Morlet wavelets by the example of Parkinson's disease experimental data. We demonstrate that these methods are complementary, that is, the standard methods and the wave train analysis method reveal sufficiently different effects in the EEG data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical discrimination of breast cancer microarray data Identification of conserved regulatory motif signatures in human miRNA upstream regions Improving extraction of protein — Protein interaction datasets from KUPS using hashing approach Extraction of associated quantitative traits by association mining Prediction of catalytic site of proteins based on amino acid triads approach using non parametric function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1