Jason Kane, Bo Tang, Zhen Chen, Jun Yan, Tao Wei, Haibo He, Qing Yang
{"title":"反射树:生物学启发的未来智慧城市并行架构","authors":"Jason Kane, Bo Tang, Zhen Chen, Jun Yan, Tao Wei, Haibo He, Qing Yang","doi":"10.1109/ICPP.2015.45","DOIUrl":null,"url":null,"abstract":"We introduce a new parallel computing and communication architecture, Reflex-Tree, with massive sensing, data processing, and control functions suitable for future smart cities. The central feature of the proposed Reflex-Tree architecture is inspired by a fundamental element of the human nervous system: reflex arcs, the neuromuscular reactions and instinctive motions of a part of the body in response to urgent situations. At the bottom level of the Reflex-Tree (layer 4), novel sensing devices are proposed that are controlled by low power processing elements. These \"leaf\" nodes are then connected to new classification engines based on machine learning techniques, including support vector machines (SVM), to form the third layer. The next layer up consists of servers that provide accurate control decisions via multi-layer adaptive learning and spatial-temporal association, before they are connected to the top level cloud where complex system behavior analysis is performed. Our multi-layered architecture mimics human neural circuits to achieve the high levels of parallelization and scalability required for efficient city-wide monitoring and feedback. To demonstrate the utility of our architecture, we present the design, implementation, and experimental evaluation of a prototype Reflex-Tree. City power supply network and gas pipeline management scenarios are used to drive our prototype as case studies. We show the effectiveness for several levels of the architecture and discuss the feasibility of implementation.","PeriodicalId":423007,"journal":{"name":"2015 44th International Conference on Parallel Processing","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Reflex-Tree: A Biologically Inspired Parallel Architecture for Future Smart Cities\",\"authors\":\"Jason Kane, Bo Tang, Zhen Chen, Jun Yan, Tao Wei, Haibo He, Qing Yang\",\"doi\":\"10.1109/ICPP.2015.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new parallel computing and communication architecture, Reflex-Tree, with massive sensing, data processing, and control functions suitable for future smart cities. The central feature of the proposed Reflex-Tree architecture is inspired by a fundamental element of the human nervous system: reflex arcs, the neuromuscular reactions and instinctive motions of a part of the body in response to urgent situations. At the bottom level of the Reflex-Tree (layer 4), novel sensing devices are proposed that are controlled by low power processing elements. These \\\"leaf\\\" nodes are then connected to new classification engines based on machine learning techniques, including support vector machines (SVM), to form the third layer. The next layer up consists of servers that provide accurate control decisions via multi-layer adaptive learning and spatial-temporal association, before they are connected to the top level cloud where complex system behavior analysis is performed. Our multi-layered architecture mimics human neural circuits to achieve the high levels of parallelization and scalability required for efficient city-wide monitoring and feedback. To demonstrate the utility of our architecture, we present the design, implementation, and experimental evaluation of a prototype Reflex-Tree. City power supply network and gas pipeline management scenarios are used to drive our prototype as case studies. We show the effectiveness for several levels of the architecture and discuss the feasibility of implementation.\",\"PeriodicalId\":423007,\"journal\":{\"name\":\"2015 44th International Conference on Parallel Processing\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 44th International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2015.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 44th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2015.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reflex-Tree: A Biologically Inspired Parallel Architecture for Future Smart Cities
We introduce a new parallel computing and communication architecture, Reflex-Tree, with massive sensing, data processing, and control functions suitable for future smart cities. The central feature of the proposed Reflex-Tree architecture is inspired by a fundamental element of the human nervous system: reflex arcs, the neuromuscular reactions and instinctive motions of a part of the body in response to urgent situations. At the bottom level of the Reflex-Tree (layer 4), novel sensing devices are proposed that are controlled by low power processing elements. These "leaf" nodes are then connected to new classification engines based on machine learning techniques, including support vector machines (SVM), to form the third layer. The next layer up consists of servers that provide accurate control decisions via multi-layer adaptive learning and spatial-temporal association, before they are connected to the top level cloud where complex system behavior analysis is performed. Our multi-layered architecture mimics human neural circuits to achieve the high levels of parallelization and scalability required for efficient city-wide monitoring and feedback. To demonstrate the utility of our architecture, we present the design, implementation, and experimental evaluation of a prototype Reflex-Tree. City power supply network and gas pipeline management scenarios are used to drive our prototype as case studies. We show the effectiveness for several levels of the architecture and discuss the feasibility of implementation.