支持科学工作流优化的性能建模与预测

C. Wu, Vivek Datla
{"title":"支持科学工作流优化的性能建模与预测","authors":"C. Wu, Vivek Datla","doi":"10.1109/SERVICES.2011.37","DOIUrl":null,"url":null,"abstract":"The computing modules in distributed scientific workflows must be mapped to computer nodes in shared network environments for optimal workflow performance. Finding a good workflow mapping scheme critically depends on an accurate prediction of the execution time of each individual computational module in the workflow. The time prediction of a scientific computation does not have a silver bullet as it is determined collectively by several dynamic system factors including concurrent loads, memory size, CPU speed, and also by the complexity of the computational program itself. This paper investigates the problem of modeling scientific computations and predicting their execution time based on a combination of both hardware and software properties. We employ statistical learning techniques to estimate the effective computational power of a given computer node at any point of time and estimate the total number of CPU cycles needed for executing a given computational program on any input data size. We analytically derive an upper bound of the estimation error for execution time prediction given the hardware and software properties. The proposed statistical analysis-based solution to performance modeling and prediction is validated and justified by experimental results measured on the computing nodes that vary significantly in terms of the hardware specifications.","PeriodicalId":429726,"journal":{"name":"2011 IEEE World Congress on Services","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"On Performance Modeling and Prediction in Support of Scientific Workflow Optimization\",\"authors\":\"C. Wu, Vivek Datla\",\"doi\":\"10.1109/SERVICES.2011.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The computing modules in distributed scientific workflows must be mapped to computer nodes in shared network environments for optimal workflow performance. Finding a good workflow mapping scheme critically depends on an accurate prediction of the execution time of each individual computational module in the workflow. The time prediction of a scientific computation does not have a silver bullet as it is determined collectively by several dynamic system factors including concurrent loads, memory size, CPU speed, and also by the complexity of the computational program itself. This paper investigates the problem of modeling scientific computations and predicting their execution time based on a combination of both hardware and software properties. We employ statistical learning techniques to estimate the effective computational power of a given computer node at any point of time and estimate the total number of CPU cycles needed for executing a given computational program on any input data size. We analytically derive an upper bound of the estimation error for execution time prediction given the hardware and software properties. The proposed statistical analysis-based solution to performance modeling and prediction is validated and justified by experimental results measured on the computing nodes that vary significantly in terms of the hardware specifications.\",\"PeriodicalId\":429726,\"journal\":{\"name\":\"2011 IEEE World Congress on Services\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE World Congress on Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SERVICES.2011.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE World Congress on Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERVICES.2011.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

分布式科学工作流中的计算模块必须映射到共享网络环境中的计算机节点上,才能获得最佳的工作流性能。找到一个好的工作流映射方案关键取决于对工作流中每个单独计算模块的执行时间的准确预测。科学计算的时间预测没有灵丹妙药,因为它是由几个动态系统因素共同决定的,包括并发负载、内存大小、CPU速度,以及计算程序本身的复杂性。本文研究了基于硬件和软件特性相结合的科学计算建模和执行时间预测问题。我们使用统计学习技术来估计给定计算机节点在任何时间点的有效计算能力,并估计在任何输入数据大小上执行给定计算程序所需的CPU周期总数。在给定硬件和软件特性的情况下,我们解析地导出了执行时间预测估计误差的上界。本文提出的基于统计分析的性能建模和预测解决方案通过在硬件规格差异很大的计算节点上测量的实验结果进行了验证和证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Performance Modeling and Prediction in Support of Scientific Workflow Optimization
The computing modules in distributed scientific workflows must be mapped to computer nodes in shared network environments for optimal workflow performance. Finding a good workflow mapping scheme critically depends on an accurate prediction of the execution time of each individual computational module in the workflow. The time prediction of a scientific computation does not have a silver bullet as it is determined collectively by several dynamic system factors including concurrent loads, memory size, CPU speed, and also by the complexity of the computational program itself. This paper investigates the problem of modeling scientific computations and predicting their execution time based on a combination of both hardware and software properties. We employ statistical learning techniques to estimate the effective computational power of a given computer node at any point of time and estimate the total number of CPU cycles needed for executing a given computational program on any input data size. We analytically derive an upper bound of the estimation error for execution time prediction given the hardware and software properties. The proposed statistical analysis-based solution to performance modeling and prediction is validated and justified by experimental results measured on the computing nodes that vary significantly in terms of the hardware specifications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reputation-Based Web Service Selection for Composition SSC4Cloud Tooling: An Integrated Environment for the Development of Business Processes with Security Requirements in the Cloud Simplifying Web Service Discovery & Validating Service Composition A Survey of Cloud Storage Facilities Externalizing the Autopoietic Part of Software to Achieve Self-Adaptability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1