{"title":"分析了具有莫尔-库仑-特雷斯卡塑性条件的介质中球腔膨胀问题","authors":"V. Kotov, D. B. Timofeev","doi":"10.32326/1814-9146-2019-81-3-292-304","DOIUrl":null,"url":null,"abstract":"An analytical solution of the one-dimensional problem of a spherical cavity expanding at a constant velocity from a point in a space occupied by a plastic medium has been obtained. Impact compressibility of the medium is described using linear Hugoniot's adiabat. Plastic deformation obeys the Mohr - Coulomb yield criterion with constraints on the value of maximum tangential stresses according to Tresca's criterion. In the assumption of rigid-plastic deformation (the elastic precursor being neglected), incompressibility behind the shockwave front and the equality of the propagation velocities of the fronts of the plastic wave and the plane shockwave defined by linear Hugoniot's adiabat, a boundary-value problem for a system of two first-order ordinary differential equations for the dimensionless velocity and stress depending on the self-similar variable is formulated. A closed-form solution of this problem has been obtained in the form of a stationary running wave - a plastic shockwave propagating in an unperturbed half-space. This solution is a generalization of the earlier obtained analytical solution for a medium with the Mohr - Coulomb plasticity condition.\n\nThe effect of constraining the limiting value of maximal tangential stresses on the distribution of dimensionless stresses behind the shockwave front has been examined. Formulas for determining the range of cavity expansion velocities, within which a simple solution for a medium with Tresca's plasticity condition is applicable, have been derived. The obtained solution can be used for evaluating resistance to high-velocity penetration of rigid strikers into low-strength soil media.","PeriodicalId":340995,"journal":{"name":"Problems of strenght and plasticity","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ANALYZING THE SPHERICAL CAVITY EXPANSION PROBLEM IN A MEDIUM WITH MOHR − COULOMB − TRESCA'S PLASTICITY CONDITION\",\"authors\":\"V. Kotov, D. B. Timofeev\",\"doi\":\"10.32326/1814-9146-2019-81-3-292-304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An analytical solution of the one-dimensional problem of a spherical cavity expanding at a constant velocity from a point in a space occupied by a plastic medium has been obtained. Impact compressibility of the medium is described using linear Hugoniot's adiabat. Plastic deformation obeys the Mohr - Coulomb yield criterion with constraints on the value of maximum tangential stresses according to Tresca's criterion. In the assumption of rigid-plastic deformation (the elastic precursor being neglected), incompressibility behind the shockwave front and the equality of the propagation velocities of the fronts of the plastic wave and the plane shockwave defined by linear Hugoniot's adiabat, a boundary-value problem for a system of two first-order ordinary differential equations for the dimensionless velocity and stress depending on the self-similar variable is formulated. A closed-form solution of this problem has been obtained in the form of a stationary running wave - a plastic shockwave propagating in an unperturbed half-space. This solution is a generalization of the earlier obtained analytical solution for a medium with the Mohr - Coulomb plasticity condition.\\n\\nThe effect of constraining the limiting value of maximal tangential stresses on the distribution of dimensionless stresses behind the shockwave front has been examined. Formulas for determining the range of cavity expansion velocities, within which a simple solution for a medium with Tresca's plasticity condition is applicable, have been derived. The obtained solution can be used for evaluating resistance to high-velocity penetration of rigid strikers into low-strength soil media.\",\"PeriodicalId\":340995,\"journal\":{\"name\":\"Problems of strenght and plasticity\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Problems of strenght and plasticity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32326/1814-9146-2019-81-3-292-304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problems of strenght and plasticity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32326/1814-9146-2019-81-3-292-304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ANALYZING THE SPHERICAL CAVITY EXPANSION PROBLEM IN A MEDIUM WITH MOHR − COULOMB − TRESCA'S PLASTICITY CONDITION
An analytical solution of the one-dimensional problem of a spherical cavity expanding at a constant velocity from a point in a space occupied by a plastic medium has been obtained. Impact compressibility of the medium is described using linear Hugoniot's adiabat. Plastic deformation obeys the Mohr - Coulomb yield criterion with constraints on the value of maximum tangential stresses according to Tresca's criterion. In the assumption of rigid-plastic deformation (the elastic precursor being neglected), incompressibility behind the shockwave front and the equality of the propagation velocities of the fronts of the plastic wave and the plane shockwave defined by linear Hugoniot's adiabat, a boundary-value problem for a system of two first-order ordinary differential equations for the dimensionless velocity and stress depending on the self-similar variable is formulated. A closed-form solution of this problem has been obtained in the form of a stationary running wave - a plastic shockwave propagating in an unperturbed half-space. This solution is a generalization of the earlier obtained analytical solution for a medium with the Mohr - Coulomb plasticity condition.
The effect of constraining the limiting value of maximal tangential stresses on the distribution of dimensionless stresses behind the shockwave front has been examined. Formulas for determining the range of cavity expansion velocities, within which a simple solution for a medium with Tresca's plasticity condition is applicable, have been derived. The obtained solution can be used for evaluating resistance to high-velocity penetration of rigid strikers into low-strength soil media.