具有相关可再生能源的能源系统可靠性的有效计算方法

Ivo S. L. Tebexreni, Carmen L. T. Borges
{"title":"具有相关可再生能源的能源系统可靠性的有效计算方法","authors":"Ivo S. L. Tebexreni, Carmen L. T. Borges","doi":"10.1109/ISC255366.2022.9921957","DOIUrl":null,"url":null,"abstract":"This article proposes methods that use nonsequential Monte Carlo Simulation (MCS) to calculate reliability indices of power systems with correlated energy sources. The methods apply Principal Correlated Analysis (PCA), covariance matrix, random variable transformation and correlation mapping. Good results were found in cases with linear correlations and high failure state frequency. The processing time was consistent with that observed in classical nonsequential Monte Carlo simulation, and with PCA, it was possible to reduce the dimensionality of the system.","PeriodicalId":277015,"journal":{"name":"2022 IEEE International Smart Cities Conference (ISC2)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Methods to Calculate the Reliability of Energy Systems with Correlated Renewable Sources\",\"authors\":\"Ivo S. L. Tebexreni, Carmen L. T. Borges\",\"doi\":\"10.1109/ISC255366.2022.9921957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes methods that use nonsequential Monte Carlo Simulation (MCS) to calculate reliability indices of power systems with correlated energy sources. The methods apply Principal Correlated Analysis (PCA), covariance matrix, random variable transformation and correlation mapping. Good results were found in cases with linear correlations and high failure state frequency. The processing time was consistent with that observed in classical nonsequential Monte Carlo simulation, and with PCA, it was possible to reduce the dimensionality of the system.\",\"PeriodicalId\":277015,\"journal\":{\"name\":\"2022 IEEE International Smart Cities Conference (ISC2)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Smart Cities Conference (ISC2)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISC255366.2022.9921957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Smart Cities Conference (ISC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISC255366.2022.9921957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了用非顺序蒙特卡罗仿真(MCS)计算具有相关能源的电力系统可靠性指标的方法。该方法主要应用主相关分析、协方差矩阵、随机变量变换和相关映射等方法。在具有线性相关性和高失效状态频率的情况下,得到了良好的结果。处理时间与经典的非顺序蒙特卡罗模拟一致,并且使用PCA可以降低系统的维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Methods to Calculate the Reliability of Energy Systems with Correlated Renewable Sources
This article proposes methods that use nonsequential Monte Carlo Simulation (MCS) to calculate reliability indices of power systems with correlated energy sources. The methods apply Principal Correlated Analysis (PCA), covariance matrix, random variable transformation and correlation mapping. Good results were found in cases with linear correlations and high failure state frequency. The processing time was consistent with that observed in classical nonsequential Monte Carlo simulation, and with PCA, it was possible to reduce the dimensionality of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Use of Technology by Older Adults in El Paso, Texas during COVID-19: Purposes, Challenges, and Opportunities Sharing-DNA: a data-driven tool to map the attitude towards sharing services across Europe Development of Hybrid Photovoltaic-based Nanogrids for the Energy Rehabilitation of Public Buildings: The BERLIN Project Advanced Short-Term Net Load Forecasting for Renewable-Based Microgrids Multiple Pedestrian Tracking Framework using Deep Learning-based Multiscale Image Analysis for Stationary-camera Video Surveillance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1