用紧急信息扩大DGPS广播——潜在的覆盖范围和数据速率

R. Hartnett, P. Swaszek, K. Gross
{"title":"用紧急信息扩大DGPS广播——潜在的覆盖范围和数据速率","authors":"R. Hartnett, P. Swaszek, K. Gross","doi":"10.1109/THS.2010.5655069","DOIUrl":null,"url":null,"abstract":"Differential GPS, or DGPS, is a medium frequency (MF) radio system that is used worldwide for the broadcast of differential corrections to users to improve the accuracy and integrity of the GPS. This communications system works by digitally modulating radio signals broadcast from a network of marine radio beacons operating in the medium frequency 283.5–325 kHz radio band. The modulation scheme called Minimum Shift Keying (MSK) is used to transmit the correction data at typical data rates of between 50 and 200 bits per second (bps). The U.S. Coast Guard has pioneered the use of MSK for transmission of differential GPS corrections, and has provided over ten years of worthy service with the system. The U.S. DGPS installation is nation-wide, with over 85 transmitters providing double coverage to most of the CONUS. Today, the Coast Guard is re-examining the role of DGPS/radio beacons with the goal of optimizing service for the next ten years. Here we suggest that the DGPS system has significant capability for use beyond that of its current mandate; specifically, there exists the potential for concurrently transmitting a second information-bearing signal on the beacon signal. We believe that this simultaneous transmission of the current navigation correction information (the primary channel) and additional messaging (perhaps DHS emergency messaging or other relevant information) could be accomplished at very minimal cost, and with minimal impact on current users, using a technique we have called phase trellis overlay. This idea has been proposed in earlier work by these authors; several variations of the approach have been designed, analyzed, and tested with results presented at Institute of Navigation conferences. These previous presentations have focused on the technical details of the method; for example, design of the new communications signals, bandwidth of the resulting signal relative to the DGPS system requirements, implementation concerns at the transmitter, and its impact on legacy user performance were analyzed. Here we summarize these earlier results within the context of a potential DHS emergency messaging system. We re-examine the technical details of this approach as a simply parameterized FM (frequency modulation) overlay which yields mathematically tractable performance results. Sample results of this analysis highlight the tradeoffs between coverage expected for legacy users and coverage expected for the new DHS messaging system.","PeriodicalId":106557,"journal":{"name":"2010 IEEE International Conference on Technologies for Homeland Security (HST)","volume":"346 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Augmenting the DGPS broadcast with emergency information — Potential coverage and data rate\",\"authors\":\"R. Hartnett, P. Swaszek, K. Gross\",\"doi\":\"10.1109/THS.2010.5655069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differential GPS, or DGPS, is a medium frequency (MF) radio system that is used worldwide for the broadcast of differential corrections to users to improve the accuracy and integrity of the GPS. This communications system works by digitally modulating radio signals broadcast from a network of marine radio beacons operating in the medium frequency 283.5–325 kHz radio band. The modulation scheme called Minimum Shift Keying (MSK) is used to transmit the correction data at typical data rates of between 50 and 200 bits per second (bps). The U.S. Coast Guard has pioneered the use of MSK for transmission of differential GPS corrections, and has provided over ten years of worthy service with the system. The U.S. DGPS installation is nation-wide, with over 85 transmitters providing double coverage to most of the CONUS. Today, the Coast Guard is re-examining the role of DGPS/radio beacons with the goal of optimizing service for the next ten years. Here we suggest that the DGPS system has significant capability for use beyond that of its current mandate; specifically, there exists the potential for concurrently transmitting a second information-bearing signal on the beacon signal. We believe that this simultaneous transmission of the current navigation correction information (the primary channel) and additional messaging (perhaps DHS emergency messaging or other relevant information) could be accomplished at very minimal cost, and with minimal impact on current users, using a technique we have called phase trellis overlay. This idea has been proposed in earlier work by these authors; several variations of the approach have been designed, analyzed, and tested with results presented at Institute of Navigation conferences. These previous presentations have focused on the technical details of the method; for example, design of the new communications signals, bandwidth of the resulting signal relative to the DGPS system requirements, implementation concerns at the transmitter, and its impact on legacy user performance were analyzed. Here we summarize these earlier results within the context of a potential DHS emergency messaging system. We re-examine the technical details of this approach as a simply parameterized FM (frequency modulation) overlay which yields mathematically tractable performance results. Sample results of this analysis highlight the tradeoffs between coverage expected for legacy users and coverage expected for the new DHS messaging system.\",\"PeriodicalId\":106557,\"journal\":{\"name\":\"2010 IEEE International Conference on Technologies for Homeland Security (HST)\",\"volume\":\"346 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Technologies for Homeland Security (HST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/THS.2010.5655069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Technologies for Homeland Security (HST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THS.2010.5655069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

差分GPS或DGPS是一种中频(MF)无线电系统,在世界范围内用于向用户广播差分校正,以提高GPS的精度和完整性。该通信系统的工作原理是通过数字调制从海上无线电信标网络广播的无线电信号,该网络工作在中频283.5-325千赫无线电频段。称为最小移位键控(MSK)的调制方案用于以50至200比特/秒(bps)的典型数据速率传输校正数据。美国海岸警卫队率先使用MSK传输差分GPS校正,并提供了超过十年的有价值的服务与系统。美国的DGPS系统在全国范围内安装,超过85个发射机为大多数CONUS提供双重覆盖。今天,海岸警卫队正在重新审视DGPS/无线电信标的作用,目标是在未来十年优化服务。在此,我们建议,发展中全球定位系统在其目前的任务范围之外具有很大的使用能力;具体地说,存在在信标信号上同时发送第二承载信息信号的可能性。我们认为,当前导航校正信息(主信道)和附加消息(可能是国土安全部紧急消息或其他相关信息)的同时传输可以以非常低的成本完成,并且对当前用户的影响最小,使用我们称为相位网格覆盖的技术。这些作者在早期的工作中提出了这个想法;该方法的几种变体已经被设计、分析和测试,并在导航学会会议上发表了结果。前面的介绍集中在该方法的技术细节上;例如,分析了新通信信号的设计、与DGPS系统要求相关的产生信号的带宽、发射机的实现问题及其对传统用户性能的影响。在这里,我们在潜在的国土安全部紧急消息系统的背景下总结这些早期的结果。我们重新审视了这种方法的技术细节,作为一个简单的参数化FM(频率调制)覆盖,它产生数学上可处理的性能结果。该分析的示例结果突出了传统用户的预期覆盖率与新DHS消息传递系统的预期覆盖率之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Augmenting the DGPS broadcast with emergency information — Potential coverage and data rate
Differential GPS, or DGPS, is a medium frequency (MF) radio system that is used worldwide for the broadcast of differential corrections to users to improve the accuracy and integrity of the GPS. This communications system works by digitally modulating radio signals broadcast from a network of marine radio beacons operating in the medium frequency 283.5–325 kHz radio band. The modulation scheme called Minimum Shift Keying (MSK) is used to transmit the correction data at typical data rates of between 50 and 200 bits per second (bps). The U.S. Coast Guard has pioneered the use of MSK for transmission of differential GPS corrections, and has provided over ten years of worthy service with the system. The U.S. DGPS installation is nation-wide, with over 85 transmitters providing double coverage to most of the CONUS. Today, the Coast Guard is re-examining the role of DGPS/radio beacons with the goal of optimizing service for the next ten years. Here we suggest that the DGPS system has significant capability for use beyond that of its current mandate; specifically, there exists the potential for concurrently transmitting a second information-bearing signal on the beacon signal. We believe that this simultaneous transmission of the current navigation correction information (the primary channel) and additional messaging (perhaps DHS emergency messaging or other relevant information) could be accomplished at very minimal cost, and with minimal impact on current users, using a technique we have called phase trellis overlay. This idea has been proposed in earlier work by these authors; several variations of the approach have been designed, analyzed, and tested with results presented at Institute of Navigation conferences. These previous presentations have focused on the technical details of the method; for example, design of the new communications signals, bandwidth of the resulting signal relative to the DGPS system requirements, implementation concerns at the transmitter, and its impact on legacy user performance were analyzed. Here we summarize these earlier results within the context of a potential DHS emergency messaging system. We re-examine the technical details of this approach as a simply parameterized FM (frequency modulation) overlay which yields mathematically tractable performance results. Sample results of this analysis highlight the tradeoffs between coverage expected for legacy users and coverage expected for the new DHS messaging system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wireless systems of threats monitoring Goal-based assessment for the cybersecurity of critical infrastructure Securing IPv6 network infrastructure: A new security model Risks of unrecognized commonalities in information technology supply chains Cryptkeeper: Improving security with encrypted RAM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1