室内受限走廊空中机器人鲁棒自适应非线性控制设计

V. Sumathy, D. Ghose
{"title":"室内受限走廊空中机器人鲁棒自适应非线性控制设计","authors":"V. Sumathy, D. Ghose","doi":"10.1109/AIRPHARO52252.2021.9571026","DOIUrl":null,"url":null,"abstract":"A robust adaptive non-linear controller for a quadcopter manipulator system, used in applications in constrained narrow corridors, is proposed in this paper. The aerial robot considered comprises a three degree of freedom manipulator attached to the aerial vehicle's center of gravity at the bottom. During tasks that involve constrained environments like corridors, the controller should provide efficient control inputs to traverse with minimum trajectory tracking error, disturbance rejection, and stability. External disturbances such as wind, noise, and other factors and unmodeled non-linearities within the model affect the system in real-time applications and degrade its performance. To achieve stability and minimize trajectory tracking error, a novel robust augmented adaptive torque control law is developed for the system, which combines a feedback linearization controller with a model reference adaptive controller. The integrated system has a coupled uncertain non-linear dynamics. The adaptive mechanism's update law is derived using the SPR-Lyapunov approach and then modified with a Γ-projection operator to ensure that the estimates are bounded. In addition, the designed controller with projection-based adaptive law is implemented on the unified plant dynamics and evaluated using MATLAB and ROS/Gazebo simulations. A real-time task scenario is developed in ROS/Gazebo, with two rooms connected by a small corridor as the environment and ArUco marks on the walls serving as targets.","PeriodicalId":415722,"journal":{"name":"2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust Adaptive Non-Linear Control Design for an Aerial Robot with In-Door Application in Constrained Corridors\",\"authors\":\"V. Sumathy, D. Ghose\",\"doi\":\"10.1109/AIRPHARO52252.2021.9571026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A robust adaptive non-linear controller for a quadcopter manipulator system, used in applications in constrained narrow corridors, is proposed in this paper. The aerial robot considered comprises a three degree of freedom manipulator attached to the aerial vehicle's center of gravity at the bottom. During tasks that involve constrained environments like corridors, the controller should provide efficient control inputs to traverse with minimum trajectory tracking error, disturbance rejection, and stability. External disturbances such as wind, noise, and other factors and unmodeled non-linearities within the model affect the system in real-time applications and degrade its performance. To achieve stability and minimize trajectory tracking error, a novel robust augmented adaptive torque control law is developed for the system, which combines a feedback linearization controller with a model reference adaptive controller. The integrated system has a coupled uncertain non-linear dynamics. The adaptive mechanism's update law is derived using the SPR-Lyapunov approach and then modified with a Γ-projection operator to ensure that the estimates are bounded. In addition, the designed controller with projection-based adaptive law is implemented on the unified plant dynamics and evaluated using MATLAB and ROS/Gazebo simulations. A real-time task scenario is developed in ROS/Gazebo, with two rooms connected by a small corridor as the environment and ArUco marks on the walls serving as targets.\",\"PeriodicalId\":415722,\"journal\":{\"name\":\"2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIRPHARO52252.2021.9571026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIRPHARO52252.2021.9571026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种适用于约束狭窄通道的四轴机械臂系统鲁棒自适应非线性控制器。所考虑的空中机器人包括一个三自由度的机械臂,该机械臂附着在底部的飞行器重心上。在涉及走廊等受限环境的任务中,控制器应提供有效的控制输入,以最小的轨迹跟踪误差,抗干扰性和稳定性。外部干扰,如风、噪声和其他因素以及模型中未建模的非线性,会在实时应用中影响系统并降低其性能。为了保证系统的稳定性和最小化轨迹跟踪误差,提出了一种鲁棒增广自适应转矩控制律,该律将反馈线性化控制器与模型参考自适应控制器相结合。综合系统具有耦合的不确定非线性动力学。利用SPR-Lyapunov方法推导了自适应机构的更新规律,并用Γ-projection算子进行了修正,以保证估计是有界的。此外,设计的基于投影自适应律的控制器在统一的对象动力学上实现,并使用MATLAB和ROS/Gazebo仿真对其进行了评估。在ROS/Gazebo中开发了一个实时任务场景,两个房间通过一个小走廊连接作为环境,墙上的ArUco标记作为目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Adaptive Non-Linear Control Design for an Aerial Robot with In-Door Application in Constrained Corridors
A robust adaptive non-linear controller for a quadcopter manipulator system, used in applications in constrained narrow corridors, is proposed in this paper. The aerial robot considered comprises a three degree of freedom manipulator attached to the aerial vehicle's center of gravity at the bottom. During tasks that involve constrained environments like corridors, the controller should provide efficient control inputs to traverse with minimum trajectory tracking error, disturbance rejection, and stability. External disturbances such as wind, noise, and other factors and unmodeled non-linearities within the model affect the system in real-time applications and degrade its performance. To achieve stability and minimize trajectory tracking error, a novel robust augmented adaptive torque control law is developed for the system, which combines a feedback linearization controller with a model reference adaptive controller. The integrated system has a coupled uncertain non-linear dynamics. The adaptive mechanism's update law is derived using the SPR-Lyapunov approach and then modified with a Γ-projection operator to ensure that the estimates are bounded. In addition, the designed controller with projection-based adaptive law is implemented on the unified plant dynamics and evaluated using MATLAB and ROS/Gazebo simulations. A real-time task scenario is developed in ROS/Gazebo, with two rooms connected by a small corridor as the environment and ArUco marks on the walls serving as targets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical Program Adaptive Control for Cooperative Aerial Transportation Using Catenary Robots Forest Drones for Environmental Sensing and Nature Conservation A General Control Architecture for Visual Servoing and Physical Interaction Tasks for Fully-actuated Aerial Vehicles Experimental Investigation of Soft-Landing of Quadrotors via Induced Wind Modeling Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1