不规则OpenCL核迭代序列的自适应划分

Pierre Huchant, Denis Barthou, M. Counilh
{"title":"不规则OpenCL核迭代序列的自适应划分","authors":"Pierre Huchant, Denis Barthou, M. Counilh","doi":"10.1109/SBAC-PAD.2018.00051","DOIUrl":null,"url":null,"abstract":"OpenCL defines a common parallel programming language for all devices, although writing tasks adapted to the devices, managing communication and load-balancing issues are left to the programmer. We propose in this paper a static/dynamic approach for the execution of an iterated sequence of data-dependent kernels on a multi-device heterogeneous architecture. The method allows to automatically distribute irregular kernels onto multiple devices and tackles, without training, both load balancing and data transfers issues coming from hardware heterogeneity, load imbalance within the application itself and load variations between repeated executions of the sequence.","PeriodicalId":307747,"journal":{"name":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive Partitioning for Iterated Sequences of Irregular OpenCL Kernels\",\"authors\":\"Pierre Huchant, Denis Barthou, M. Counilh\",\"doi\":\"10.1109/SBAC-PAD.2018.00051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"OpenCL defines a common parallel programming language for all devices, although writing tasks adapted to the devices, managing communication and load-balancing issues are left to the programmer. We propose in this paper a static/dynamic approach for the execution of an iterated sequence of data-dependent kernels on a multi-device heterogeneous architecture. The method allows to automatically distribute irregular kernels onto multiple devices and tackles, without training, both load balancing and data transfers issues coming from hardware heterogeneity, load imbalance within the application itself and load variations between repeated executions of the sequence.\",\"PeriodicalId\":307747,\"journal\":{\"name\":\"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"volume\":\"194 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBAC-PAD.2018.00051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD.2018.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

OpenCL为所有设备定义了一种通用的并行编程语言,尽管编写适合设备的任务、管理通信和负载平衡问题留给了程序员。在本文中,我们提出了一种静态/动态方法,用于在多设备异构架构上执行数据依赖内核的迭代序列。该方法允许将不规则的内核自动分布到多个设备上,并且无需训练就可以解决由硬件异构、应用程序本身的负载不平衡以及重复执行序列之间的负载变化引起的负载平衡和数据传输问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Partitioning for Iterated Sequences of Irregular OpenCL Kernels
OpenCL defines a common parallel programming language for all devices, although writing tasks adapted to the devices, managing communication and load-balancing issues are left to the programmer. We propose in this paper a static/dynamic approach for the execution of an iterated sequence of data-dependent kernels on a multi-device heterogeneous architecture. The method allows to automatically distribute irregular kernels onto multiple devices and tackles, without training, both load balancing and data transfers issues coming from hardware heterogeneity, load imbalance within the application itself and load variations between repeated executions of the sequence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Time Predictability Features of ARM Big. LITTLE Multicores Impacts of Three Soft-Fault Models on Hybrid Parallel Asynchronous Iterative Methods Predicting the Performance Impact of Increasing Memory Bandwidth for Scientific Workflows From Java to FPGA: An Experience with the Intel HARP System Copyright
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1