Web上的深度学习:使用基于Web的客户端框架进行最先进的对象检测

Xenofon Pournaras, Dimitrios A. Koutsomitropoulos
{"title":"Web上的深度学习:使用基于Web的客户端框架进行最先进的对象检测","authors":"Xenofon Pournaras, Dimitrios A. Koutsomitropoulos","doi":"10.1109/IISA50023.2020.9284358","DOIUrl":null,"url":null,"abstract":"In the present paper we make a comparative study and evaluation of frameworks and libraries for deep learning purposes on the client-side, considering libraries such as TensorFlow.js, brain.js, Keras.js, ConvNet.js and others. It is examined how feasible and efficient it is to execute deep learning tasks, using client-side libraries and frameworks in contrast to the conventional approach. Moreover, we focus on the computer vision field of object detection and we examine the problem of object detection through different state-of-the-art approaches and object detectors. At the same time, we evaluate whether it is feasible and efficient to detect objects in the browser environment using a prototype implementation based on some of the libraries that are studied.","PeriodicalId":109238,"journal":{"name":"2020 11th International Conference on Information, Intelligence, Systems and Applications (IISA","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Learning on the Web: State-of-the-art Object Detection using Web-based Client-side Frameworks\",\"authors\":\"Xenofon Pournaras, Dimitrios A. Koutsomitropoulos\",\"doi\":\"10.1109/IISA50023.2020.9284358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper we make a comparative study and evaluation of frameworks and libraries for deep learning purposes on the client-side, considering libraries such as TensorFlow.js, brain.js, Keras.js, ConvNet.js and others. It is examined how feasible and efficient it is to execute deep learning tasks, using client-side libraries and frameworks in contrast to the conventional approach. Moreover, we focus on the computer vision field of object detection and we examine the problem of object detection through different state-of-the-art approaches and object detectors. At the same time, we evaluate whether it is feasible and efficient to detect objects in the browser environment using a prototype implementation based on some of the libraries that are studied.\",\"PeriodicalId\":109238,\"journal\":{\"name\":\"2020 11th International Conference on Information, Intelligence, Systems and Applications (IISA\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th International Conference on Information, Intelligence, Systems and Applications (IISA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISA50023.2020.9284358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th International Conference on Information, Intelligence, Systems and Applications (IISA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA50023.2020.9284358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们对客户端用于深度学习的框架和库进行了比较研究和评估,考虑了TensorFlow.js、brain.js、Keras.js、ConvNet.js等库。它检查了与传统方法相比,使用客户端库和框架执行深度学习任务的可行性和效率。此外,我们专注于计算机视觉领域的目标检测,并通过不同的最先进的方法和目标检测器来研究目标检测问题。同时,我们评估了使用基于所研究的一些库的原型实现在浏览器环境中检测对象是否可行和有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning on the Web: State-of-the-art Object Detection using Web-based Client-side Frameworks
In the present paper we make a comparative study and evaluation of frameworks and libraries for deep learning purposes on the client-side, considering libraries such as TensorFlow.js, brain.js, Keras.js, ConvNet.js and others. It is examined how feasible and efficient it is to execute deep learning tasks, using client-side libraries and frameworks in contrast to the conventional approach. Moreover, we focus on the computer vision field of object detection and we examine the problem of object detection through different state-of-the-art approaches and object detectors. At the same time, we evaluate whether it is feasible and efficient to detect objects in the browser environment using a prototype implementation based on some of the libraries that are studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Learning Networks for Vectorized Energy Load Forecasting Analysis and Design of Services in Building Units in the context of a Smart City A ZigBee – based Lightweight Wireless Sensor System for measuring action potential bio signals in Agriculture IoT Applications Analyzing ROADM costs in SDM networks Excavations go mobile: A web-based mobile application for archaeological excavations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1