多变量分层抽样的最优分配问题

M. G. Khan, M. J. Ahsan
{"title":"多变量分层抽样的最优分配问题","authors":"M. G. Khan, M. J. Ahsan","doi":"10.1071/SP03017","DOIUrl":null,"url":null,"abstract":"In stratified random sampling when several characteristics are to be estimated simultaneously, an allocation that is optimum for one characteristic may be far away from optimum for others. To resolve this conflict the authors formulate the problem of determining optimum compromise allocation as a nonlinear programming problem (NLPP). The allocation obtained is optimum in the sense that it minimizes the sum of weighted variances of the estimated population means of the characteristics subject to a fixed sampling cost. The formulated NLPP is treated as multistage decision problem and solved using dynamic programming technique. A numerical example is presented to illustrate the computational details.","PeriodicalId":148381,"journal":{"name":"The South Pacific Journal of Natural and Applied Sciences","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"A note on optimum allocation in multivariate stratified sampling\",\"authors\":\"M. G. Khan, M. J. Ahsan\",\"doi\":\"10.1071/SP03017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In stratified random sampling when several characteristics are to be estimated simultaneously, an allocation that is optimum for one characteristic may be far away from optimum for others. To resolve this conflict the authors formulate the problem of determining optimum compromise allocation as a nonlinear programming problem (NLPP). The allocation obtained is optimum in the sense that it minimizes the sum of weighted variances of the estimated population means of the characteristics subject to a fixed sampling cost. The formulated NLPP is treated as multistage decision problem and solved using dynamic programming technique. A numerical example is presented to illustrate the computational details.\",\"PeriodicalId\":148381,\"journal\":{\"name\":\"The South Pacific Journal of Natural and Applied Sciences\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The South Pacific Journal of Natural and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1071/SP03017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The South Pacific Journal of Natural and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1071/SP03017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

在分层随机抽样中,当需要同时估计多个特征时,对一个特征最优的分配可能与对其他特征最优的分配相差甚远。为了解决这一矛盾,作者将最优折衷分配问题表述为一个非线性规划问题。所获得的分配是最优的,因为它使受固定采样成本约束的特征的估计总体均值的加权方差之和最小。将所建立的NLPP视为多阶段决策问题,采用动态规划技术求解。给出了一个数值算例来说明计算细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A note on optimum allocation in multivariate stratified sampling
In stratified random sampling when several characteristics are to be estimated simultaneously, an allocation that is optimum for one characteristic may be far away from optimum for others. To resolve this conflict the authors formulate the problem of determining optimum compromise allocation as a nonlinear programming problem (NLPP). The allocation obtained is optimum in the sense that it minimizes the sum of weighted variances of the estimated population means of the characteristics subject to a fixed sampling cost. The formulated NLPP is treated as multistage decision problem and solved using dynamic programming technique. A numerical example is presented to illustrate the computational details.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distribution of long-horn beetles (Cerambycidae: Coleoptera) within the Fijian archipelago Organic amendments increased sweetpotato (Ipomoea batatas L.) yield in a calcareous sandy soil of Samoa Intercropping short duration leafy vegetables with pumpkin in subtropical alluvial soils of Bangladesh Evaluation of Nutrient Uptake of Selected Cover Crops and Biochar on the Yield Advantage of Two Taro (Colocasia esculenta) Cultivars in Samoa Evaluation of decision support system for agrotechnology transfer SUBSTOR potato model (v4.5) under tropical conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1