Javier de San Pedro, Thomas Bourgeat, J. Cortadella
{"title":"异步控制器的规范挖掘","authors":"Javier de San Pedro, Thomas Bourgeat, J. Cortadella","doi":"10.1109/ASYNC.2016.10","DOIUrl":null,"url":null,"abstract":"The paper presents a first effort at exploring a novel area in the domain of asynchronous controllers: specification mining. Rather than synthesizing circuits from specifications, we aim at doing reverse engineering, i.e., discovering safe specifications from the circuits that preserve a set of pre-defined behavioral properties (e.g., hazard freeness). The specifications are discovered without any previous knowledge of the behavior of the circuit environment. This area may open new opportunities for re-synthesis and verification of asynchronous controllers. The effectiveness of the proposed approach is demonstrated by mining concurrent specifications (Signal Transition Graphs) from multiple implementations of 4-phase handshake controllers and some controllers with choice.","PeriodicalId":314538,"journal":{"name":"2016 22nd IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC)","volume":"475 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Specification Mining for Asynchronous Controllers\",\"authors\":\"Javier de San Pedro, Thomas Bourgeat, J. Cortadella\",\"doi\":\"10.1109/ASYNC.2016.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a first effort at exploring a novel area in the domain of asynchronous controllers: specification mining. Rather than synthesizing circuits from specifications, we aim at doing reverse engineering, i.e., discovering safe specifications from the circuits that preserve a set of pre-defined behavioral properties (e.g., hazard freeness). The specifications are discovered without any previous knowledge of the behavior of the circuit environment. This area may open new opportunities for re-synthesis and verification of asynchronous controllers. The effectiveness of the proposed approach is demonstrated by mining concurrent specifications (Signal Transition Graphs) from multiple implementations of 4-phase handshake controllers and some controllers with choice.\",\"PeriodicalId\":314538,\"journal\":{\"name\":\"2016 22nd IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC)\",\"volume\":\"475 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 22nd IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASYNC.2016.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 22nd IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASYNC.2016.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The paper presents a first effort at exploring a novel area in the domain of asynchronous controllers: specification mining. Rather than synthesizing circuits from specifications, we aim at doing reverse engineering, i.e., discovering safe specifications from the circuits that preserve a set of pre-defined behavioral properties (e.g., hazard freeness). The specifications are discovered without any previous knowledge of the behavior of the circuit environment. This area may open new opportunities for re-synthesis and verification of asynchronous controllers. The effectiveness of the proposed approach is demonstrated by mining concurrent specifications (Signal Transition Graphs) from multiple implementations of 4-phase handshake controllers and some controllers with choice.