基于可解释AI模型的新冠肺炎康复患者心电图变化预测

Anubha Gupta, Jayant Jain, Shubhankar Poundrik, M. Shetty, M. Girish, M. Gupta
{"title":"基于可解释AI模型的新冠肺炎康复患者心电图变化预测","authors":"Anubha Gupta, Jayant Jain, Shubhankar Poundrik, M. Shetty, M. Girish, M. Gupta","doi":"10.1109/BioSMART54244.2021.9677747","DOIUrl":null,"url":null,"abstract":"COVID-19 has caused immense social and economic losses throughout the world. Subjects recovered from COVID are learned to have complications. Some studies have shown a change in the heart rate variability (HRV) in COVID-recovered subjects compared to the healthy ones. This change indicates an increased risk of heart problems among the survivors of moderate-to-severe COVID. Hence, this study is aimed at finding HRV features that get altered in COVID-recovered subjects compared to healthy subjects. Data of COVID-recovered and healthy subjects were collected from two hospitals in Delhi, India. Seven ML models have been built to classify healthy versus COVID-recovered subjects. The best-performing model was further analyzed to explore the ranking of altered heart features in COVID-recovered subjects via AI interpretability. Ranking of these features can indicate cardiovascular health status to doctors, who can provide support to the COVID-recovered subjects for timely safeguard from heart disorders. To the best of our knowledge, this is the first study with an in-depth analysis of the heart status of COVID-recovered subjects via ECG analysis.","PeriodicalId":286026,"journal":{"name":"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Interpretable AI Model-Based Predictions of ECG changes in COVID-recovered patients\",\"authors\":\"Anubha Gupta, Jayant Jain, Shubhankar Poundrik, M. Shetty, M. Girish, M. Gupta\",\"doi\":\"10.1109/BioSMART54244.2021.9677747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"COVID-19 has caused immense social and economic losses throughout the world. Subjects recovered from COVID are learned to have complications. Some studies have shown a change in the heart rate variability (HRV) in COVID-recovered subjects compared to the healthy ones. This change indicates an increased risk of heart problems among the survivors of moderate-to-severe COVID. Hence, this study is aimed at finding HRV features that get altered in COVID-recovered subjects compared to healthy subjects. Data of COVID-recovered and healthy subjects were collected from two hospitals in Delhi, India. Seven ML models have been built to classify healthy versus COVID-recovered subjects. The best-performing model was further analyzed to explore the ranking of altered heart features in COVID-recovered subjects via AI interpretability. Ranking of these features can indicate cardiovascular health status to doctors, who can provide support to the COVID-recovered subjects for timely safeguard from heart disorders. To the best of our knowledge, this is the first study with an in-depth analysis of the heart status of COVID-recovered subjects via ECG analysis.\",\"PeriodicalId\":286026,\"journal\":{\"name\":\"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BioSMART54244.2021.9677747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioSMART54244.2021.9677747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

2019冠状病毒病在全世界造成了巨大的社会和经济损失。从COVID中恢复的受试者已知有并发症。一些研究表明,与健康受试者相比,covid - 19康复受试者的心率变异性(HRV)发生了变化。这一变化表明,中重度COVID幸存者患心脏病的风险增加。因此,本研究旨在发现与健康受试者相比,covid - 19康复受试者的HRV特征发生了变化。从印度德里的两家医院收集了covid - 19康复和健康受试者的数据。已经建立了7个ML模型来对健康和covid - 19康复的受试者进行分类。通过AI可解释性,进一步分析表现最佳的模型,以探索新冠肺炎康复受试者心脏特征改变的排名。这些特征的排名可以向医生显示心血管健康状况,医生可以为covid - 19康复的受试者提供支持,及时预防心脏病。据我们所知,这是第一个通过心电图分析深入分析covid - 19康复受试者心脏状况的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interpretable AI Model-Based Predictions of ECG changes in COVID-recovered patients
COVID-19 has caused immense social and economic losses throughout the world. Subjects recovered from COVID are learned to have complications. Some studies have shown a change in the heart rate variability (HRV) in COVID-recovered subjects compared to the healthy ones. This change indicates an increased risk of heart problems among the survivors of moderate-to-severe COVID. Hence, this study is aimed at finding HRV features that get altered in COVID-recovered subjects compared to healthy subjects. Data of COVID-recovered and healthy subjects were collected from two hospitals in Delhi, India. Seven ML models have been built to classify healthy versus COVID-recovered subjects. The best-performing model was further analyzed to explore the ranking of altered heart features in COVID-recovered subjects via AI interpretability. Ranking of these features can indicate cardiovascular health status to doctors, who can provide support to the COVID-recovered subjects for timely safeguard from heart disorders. To the best of our knowledge, this is the first study with an in-depth analysis of the heart status of COVID-recovered subjects via ECG analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Efficient Electrode Ranking Method for Single Trial Detection of EEG Error-Related Potentials Efficacy of AR Haptic Simulation for Nursing Student Education In silico study of sensitivity of polymeric prism-based surface plasmon resonance sensors based on graphene and molybdenum disulfide layers A Social Robot with Conversational Capabilities for Visitor Reception: Design and Framework MICSurv: Medical Image Clustering for Survival risk group identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1