用上下文权重度量半结构化文档的相似度

Christopher C. Yang, Nan Liu
{"title":"用上下文权重度量半结构化文档的相似度","authors":"Christopher C. Yang, Nan Liu","doi":"10.1145/1148170.1148334","DOIUrl":null,"url":null,"abstract":"In this work, we study similarity measures for text-centric XML documents based on an extended vector space model, which considers both document content and structure. Experimental results based on a benchmark showed superior performance of the proposed measure over the baseline which ignores structural knowledge of XML documents.","PeriodicalId":433366,"journal":{"name":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Measuring similarity of semi-structured documents with context weights\",\"authors\":\"Christopher C. Yang, Nan Liu\",\"doi\":\"10.1145/1148170.1148334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study similarity measures for text-centric XML documents based on an extended vector space model, which considers both document content and structure. Experimental results based on a benchmark showed superior performance of the proposed measure over the baseline which ignores structural knowledge of XML documents.\",\"PeriodicalId\":433366,\"journal\":{\"name\":\"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1148170.1148334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1148170.1148334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在这项工作中,我们研究了基于扩展向量空间模型的以文本为中心的XML文档的相似性度量,该模型同时考虑了文档内容和结构。基于基准的实验结果表明,所提出的度量比忽略XML文档结构知识的基线具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measuring similarity of semi-structured documents with context weights
In this work, we study similarity measures for text-centric XML documents based on an extended vector space model, which considers both document content and structure. Experimental results based on a benchmark showed superior performance of the proposed measure over the baseline which ignores structural knowledge of XML documents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strict and vague interpretation of XML-retrieval queries AggregateRank: bringing order to web sites Text clustering with extended user feedback Improving personalized web search using result diversification High accuracy retrieval with multiple nested ranker
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1