网络安全中的数学方法:突变理论

Svitlana Shevchenko, Yuliia Zhdanovа, S. Spasiteleva
{"title":"网络安全中的数学方法:突变理论","authors":"Svitlana Shevchenko, Yuliia Zhdanovа, S. Spasiteleva","doi":"10.28925/2663-4023.2023.19.165175","DOIUrl":null,"url":null,"abstract":"The improvement of protection systems is based on the introduction and use of a mathematical apparatus. Ensuring the confidentiality, integrity and availability of information is an urgent and important problem in the modern world. Crisis processes are characteristic phenomena in security systems, so stochastic models cannot always describe their functioning and give a solution. An effective tool for solving this problem can be the use of dynamic models based on the provisions of catastrophe theory. This study is devoted to the analysis of modern approaches to the use of the basic provisions of catastrophe theory in cybersecurity systems. The work presents a brief historical view of the development of this theory and highlights the main definitions: bifurcations, attractors, catastrophes. Elementary catastrophes, their forms and features are characterized. A review of the literary sources of the use of catastrophe theory in information and cyber security was carried out. The analysis made it possible to single out that this theory has not yet been widely implemented, but there are point scientific developments in the process of detecting network anomalies in the cloud environment. The considered approaches to the application of catastrophe theory in information and cyber security can be used to train specialists in the specialty 125 Cybersecurity in the process of research","PeriodicalId":198390,"journal":{"name":"Cybersecurity: Education, Science, Technique","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MATHEMATICAL METHODS IN CYBERSECURITY: CATASTROPHE THEORY\",\"authors\":\"Svitlana Shevchenko, Yuliia Zhdanovа, S. Spasiteleva\",\"doi\":\"10.28925/2663-4023.2023.19.165175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The improvement of protection systems is based on the introduction and use of a mathematical apparatus. Ensuring the confidentiality, integrity and availability of information is an urgent and important problem in the modern world. Crisis processes are characteristic phenomena in security systems, so stochastic models cannot always describe their functioning and give a solution. An effective tool for solving this problem can be the use of dynamic models based on the provisions of catastrophe theory. This study is devoted to the analysis of modern approaches to the use of the basic provisions of catastrophe theory in cybersecurity systems. The work presents a brief historical view of the development of this theory and highlights the main definitions: bifurcations, attractors, catastrophes. Elementary catastrophes, their forms and features are characterized. A review of the literary sources of the use of catastrophe theory in information and cyber security was carried out. The analysis made it possible to single out that this theory has not yet been widely implemented, but there are point scientific developments in the process of detecting network anomalies in the cloud environment. The considered approaches to the application of catastrophe theory in information and cyber security can be used to train specialists in the specialty 125 Cybersecurity in the process of research\",\"PeriodicalId\":198390,\"journal\":{\"name\":\"Cybersecurity: Education, Science, Technique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybersecurity: Education, Science, Technique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28925/2663-4023.2023.19.165175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity: Education, Science, Technique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28925/2663-4023.2023.19.165175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

保护系统的改进是建立在引入和使用数学仪器的基础上的。确保信息的保密性、完整性和可用性是当今世界一个紧迫而重要的问题。危机过程是安全系统的特征现象,随机模型并不总是能够描述危机过程的功能并给出解决方案。解决这一问题的有效工具是利用基于突变理论规定的动态模型。本研究致力于分析在网络安全系统中使用灾变理论基本规定的现代方法。该工作提出了这一理论发展的简要历史观点,并强调了主要的定义:分岔,吸引子,灾难。阐述了基本灾变的形式和特征。回顾了在信息和网络安全中使用突变理论的文献来源。通过分析可以看出,该理论尚未得到广泛应用,但在云环境下的网络异常检测过程中有了一定的科学进展。考虑到突变理论在信息和网络安全中的应用方法,可以在研究过程中用于培训专业125网络安全专家
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MATHEMATICAL METHODS IN CYBERSECURITY: CATASTROPHE THEORY
The improvement of protection systems is based on the introduction and use of a mathematical apparatus. Ensuring the confidentiality, integrity and availability of information is an urgent and important problem in the modern world. Crisis processes are characteristic phenomena in security systems, so stochastic models cannot always describe their functioning and give a solution. An effective tool for solving this problem can be the use of dynamic models based on the provisions of catastrophe theory. This study is devoted to the analysis of modern approaches to the use of the basic provisions of catastrophe theory in cybersecurity systems. The work presents a brief historical view of the development of this theory and highlights the main definitions: bifurcations, attractors, catastrophes. Elementary catastrophes, their forms and features are characterized. A review of the literary sources of the use of catastrophe theory in information and cyber security was carried out. The analysis made it possible to single out that this theory has not yet been widely implemented, but there are point scientific developments in the process of detecting network anomalies in the cloud environment. The considered approaches to the application of catastrophe theory in information and cyber security can be used to train specialists in the specialty 125 Cybersecurity in the process of research
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DESIGN OF BIOMETRIC PROTECTION AUTHENTIFICATION SYSTEM BASED ON K-AVERAGE METHOD CRYPTOVIROLOGY: SECURITY THREATS TO GUARANTEED INFORMATION SYSTEMS AND MEASURES TO COMBAT ENCRYPTION VIRUSES MODEL OF CURRENT RISK INDICATOR OF IMPLEMENTATION OF THREATS TO INFORMATION AND COMMUNICATION SYSTEMS SELECTION OF AGGREGATION OPERATORS FOR A MULTI-CRITERIA EVALUTION OF SUTABILITY OF TERRITORIES GETTING AND PROCESSING GEOPRODITIONAL DATA WITH MATLAB MAPPING TOOLBOX
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1