{"title":"基于知识梯度的传感器路径规划策略展开动作选择","authors":"Thore Gerlach, Folker Hoffmann, A. Charlish","doi":"10.23919/fusion49465.2021.9626874","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of finding the best action in a policy rollout algorithm. Policy rollout is an online computation method used in approximate dynamic programming. We applied two different versions of the knowledge gradient (KG) policy to a sensor path planning problem. The goal of this problem is to localize an emitter using only bearing measurements. To the authors’ knowledge, this was the first time the KG was applied in a policy rollout context. The performance of the KG policy was found to be comparable with methods used in prior work while also having a potentially wider applicability.","PeriodicalId":226850,"journal":{"name":"2021 IEEE 24th International Conference on Information Fusion (FUSION)","volume":"27 14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Policy Rollout Action Selection with Knowledge Gradient for Sensor Path Planning\",\"authors\":\"Thore Gerlach, Folker Hoffmann, A. Charlish\",\"doi\":\"10.23919/fusion49465.2021.9626874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the problem of finding the best action in a policy rollout algorithm. Policy rollout is an online computation method used in approximate dynamic programming. We applied two different versions of the knowledge gradient (KG) policy to a sensor path planning problem. The goal of this problem is to localize an emitter using only bearing measurements. To the authors’ knowledge, this was the first time the KG was applied in a policy rollout context. The performance of the KG policy was found to be comparable with methods used in prior work while also having a potentially wider applicability.\",\"PeriodicalId\":226850,\"journal\":{\"name\":\"2021 IEEE 24th International Conference on Information Fusion (FUSION)\",\"volume\":\"27 14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 24th International Conference on Information Fusion (FUSION)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/fusion49465.2021.9626874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 24th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion49465.2021.9626874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Policy Rollout Action Selection with Knowledge Gradient for Sensor Path Planning
This paper considers the problem of finding the best action in a policy rollout algorithm. Policy rollout is an online computation method used in approximate dynamic programming. We applied two different versions of the knowledge gradient (KG) policy to a sensor path planning problem. The goal of this problem is to localize an emitter using only bearing measurements. To the authors’ knowledge, this was the first time the KG was applied in a policy rollout context. The performance of the KG policy was found to be comparable with methods used in prior work while also having a potentially wider applicability.