基于层次局部模型树的超声结构健康监测实验设计

Benjamin Hartmann, J. Moll, O. Nelles, C. Fritzen
{"title":"基于层次局部模型树的超声结构健康监测实验设计","authors":"Benjamin Hartmann, J. Moll, O. Nelles, C. Fritzen","doi":"10.1109/CCA.2011.6044489","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an effective and time-saving algorithm for model-based design of experiments in the framework of a structural health monitoring system. The goal is to identify and locate structural defects in plate-like geometries. The new idea combines a pseudo-random Monte-Carlo sampling with a local model network. The global distribution of data points is based on the input space partitioning which can be seen as a mapping of the non-linearities of the underlying process. This results in an active learning strategy that incorporates the process behavior into the experimental design strategy. The application of the proposed algorithm for ultrasonic imaging in an isotropic non-convex structure shows great potential. It is shown that in contrast to a grid-based approach the spatial discretization can be optimized with high accuracy and adaptivity.","PeriodicalId":208713,"journal":{"name":"2011 IEEE International Conference on Control Applications (CCA)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Hierarchical local model trees for design of experiments in the framework of ultrasonic structural health monitoring\",\"authors\":\"Benjamin Hartmann, J. Moll, O. Nelles, C. Fritzen\",\"doi\":\"10.1109/CCA.2011.6044489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an effective and time-saving algorithm for model-based design of experiments in the framework of a structural health monitoring system. The goal is to identify and locate structural defects in plate-like geometries. The new idea combines a pseudo-random Monte-Carlo sampling with a local model network. The global distribution of data points is based on the input space partitioning which can be seen as a mapping of the non-linearities of the underlying process. This results in an active learning strategy that incorporates the process behavior into the experimental design strategy. The application of the proposed algorithm for ultrasonic imaging in an isotropic non-convex structure shows great potential. It is shown that in contrast to a grid-based approach the spatial discretization can be optimized with high accuracy and adaptivity.\",\"PeriodicalId\":208713,\"journal\":{\"name\":\"2011 IEEE International Conference on Control Applications (CCA)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Control Applications (CCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2011.6044489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2011.6044489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了一种有效且省时的结构健康监测系统模型实验设计算法。目标是识别和定位板状几何结构缺陷。该方法将伪随机蒙特卡罗抽样与局部模型网络相结合。数据点的全局分布是基于输入空间划分的,这可以看作是底层过程非线性的映射。这就形成了一种主动学习策略,它将过程行为融入到实验设计策略中。该算法应用于各向同性非凸结构的超声成像显示出巨大的潜力。结果表明,与基于网格的方法相比,该方法具有较高的优化精度和自适应能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical local model trees for design of experiments in the framework of ultrasonic structural health monitoring
In this paper, we propose an effective and time-saving algorithm for model-based design of experiments in the framework of a structural health monitoring system. The goal is to identify and locate structural defects in plate-like geometries. The new idea combines a pseudo-random Monte-Carlo sampling with a local model network. The global distribution of data points is based on the input space partitioning which can be seen as a mapping of the non-linearities of the underlying process. This results in an active learning strategy that incorporates the process behavior into the experimental design strategy. The application of the proposed algorithm for ultrasonic imaging in an isotropic non-convex structure shows great potential. It is shown that in contrast to a grid-based approach the spatial discretization can be optimized with high accuracy and adaptivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Suppression of general decoherence in arbitrary n-level atom in Ξ-configuration under a bang-bang control Interval observer for Chlorella vulgaris culture in a photobioreactor Miniaturizing the spherical sundial: A hemispherical sensor for orientation and positioning with respect to point sources of light Robust gain-scheduled control of dc-dc converters: An LMI approach Slip measurement and vehicle control for leg/wheel mobile robots using caster type odometers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1